
www.manaraa.com

DEVELOPMENT OF COMPUTER SCIENCE ONLINE AND

PRELIMINARY VALIDATION OF ITS EFFICACY

AS AN INSTRUCTIONAL ENVIRONMENT

by

Gregory Paul Halopoff

Bachelor of Science
University of California, Los Angeles

1982

Master of Science
University of Southern California

1986

A dissertation submitted in partial fulfillment
of the requirements for the

Doctor of Philosophy Degree in Curriculum and Instruction
Department of Curriculum and Instruction

College of Education

Graduate College
University of Nevada, Las Vegas

December 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3115888

Copyright 2003 by

Halopoff, Gregory Paul

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3115888

Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Copyright by Gregory Paul Halopoff 2003
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Dissertation Approval
The Graduate College
University of Nevada, Las Vegas

November 25

The Dissertation prepared by

Gregory Paul Halopoff__

Entitled

Development of Computer Science Online and Preliminary Validation of

Its Efficacy as an InstruetIona 1 Environment _________________________

is approved in partial fulfillment of the requirements for the degree of

D octor o f P h ilo so p h y in C urriculum and I n s tr u c t io n

Examination Committee Chair

Examination Committee Member

Examination Committee Member

Graduate College Faculty Representative

Dean of the Graduate College

1017-52 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

Development of Computer Science Online and
Preliminary Validation of its Efficacy

As an Instructional Environment

By

Greg P. Halopoff

Dr. Neal Strudler, Dissertation Committee Chair
Professor of Curriculum and Instruction

University of Nevada, Las Vegas

Over the last decade, computer science has become a fragmented and

misunderstood subject. Part of this can be attributed to advances in technology, which

have led to increased interest in new technology departments and course offerings.

Former industrial arts subjects have been absorbed into these new departments along with

computer science, resulting in a less academic standing the subject once held.

Furthermore, emphasis on advanced placement (AP) computer science and Java has

targeted higher achieving students, resulting in declining interest and enrollment as

average students show more interest in tool-based technology courses.

CS Online was developed as an instructional environment to address many issues

facing computer science education. One of these is the need to rekindle interest in

introductory computer science. CS Online seeks to accomplish this by offering active

learning experiences set in real-world contexts. The intended outcomes are increased

interest in computer science as an academic discipline, increased enrollments in related

courses, and increased achievement resulting from cognitive skills growth.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The CS Online system generated data while 36 high school students solved

programming problems, and questionnaires administered by the system were used to

collect information about students’ self-regulatory skills and experience in math and

computers. In addition, qualitative data analysis of source code submitted by students was

conducted to determine how students progressed through the problem solving process

and the common mistakes they made.

The study revealed that students with differing levels of math and computer

experience and self-regulatory skills were able to adequately complete programming

problems using the system. The descriptive data on the 36 students indicated that students

with high motivation seemed to outperform low motivation students in all performance

measures in the study. Those who had high planning skills also seemed to outperform the

low group in most of the performance measures. A similar pattern was observed in the

students with high versus low math and computer skills. As the task difficulty increased,

students with high planning skills seemed to require increasingly fewer attempts to

complete exercises than those with lower planning skills. A qualitative analysis of

problem solving revealed that students erred in syntax, logic, and then grammar - in that

order. It was also shown that students spent considerable time re-running programs to

observe output or to clean-up code.

Although the findings suggest that in general motivation and planning seem to be

important components of learning a programming language, the current descriptive

findings should be interpreted with caution. Future studies with larger sample sizes are

warranted. To examine effects of self-regulation on learning and performance, other

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

relevant variables, such as existing computer language skills, may be included to control

their effects on the performance.

Additional findings suggest that the use of hints were helpful for students with lower

math skills, computer skills, and motivation. Teachers can encourage the use of hints for

those who need the extra help, but can discourage their use for the more highly skilled

and motivated. The findings also suggest that, based on the types of mistakes students

commonly made, instmction on debugging skills should be considered to reduce the

number of syntax, logic, and grammar errors. Less time spent correcting errors becomes

more time spent on problem solving.

Findings from the present study can be useful for further research and development of

CS Online. CS Online is currently being used by high schools in the Clark County School

District in Nevada.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure 1-1 CS Online Theoretical Framework 7
Figure 5-1 Percentage Differences in Five Performance Measures as the

Task Difficulty Increased for the Planning Sub-component
of Self-Regulation..104

Figure 5-2 Percentage Differences in Five Performance Measures as the
Task Difficulty Increased for the Self-Checking Sub-component
of Self-Regulation....... 105

Figure 5-3 Percentage Differences in Five Performance Measures as the
Task Difficulty Increased for the Effort Sub-component
of Self-Regulation..106

Figure 5-4 Percentage Differences in Five Performance Measures as the
Task Difficulty Increased for the Self-Efficacy Sub-component
of Self-Regulation... 107

Figure 5-5 Exercise 2-7-1 Major Domain Frequency Distribution............................. 116
Figure 5-6 Exercise 3-3-2 Major Domain Frequency Distribution................... 116
Figure 5-7 Exercise 3-3-3 Major Domain Frequency Distribution............................. 117
Figure 5-8 Exercise 3-3-4 Major Domain Frequency Distribution............................. 117
Figure 5-9 Exercise 3-3-5 Major Domain Frequency Distribution............................. 118
Figure 5-10 Exercise 3-5-1 Major Domain Frequency Distribution............................. 118
Figure 5-11 Exercise 3-5-2 Major Domain Frequency Distribution............................. 119
Figure 5-12 Exercise 3-5-3 Major Domain Frequency Distribution 119
Figure 5-13 Exercise 3-7-1 Major Domain Frequency Distribution............................. 120
Figure 5-14 Exercise 3-7-2 Major Domain Frequency Distribution............................. 120
Figure 5-15 Summary ofMajor Domain Frequency Distributions............................... 121
Figure 5-16 Summary of Grammar Sub-domain Frequency Distributions 124
Figure 5-17 Summary of the No-change Sub-domain Frequency Distributions 124
Figure 5-18 Summary of the Sudden Change Sub-domain Frequency

Distributions... 125
Figure 5-19 Summary of the Syntax Sub-domain Frequency Distributions................ 125

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table 3-1 Scope and Sequence of CS Online... 50
Table 4-1 Summary of Raw and Calculated Variables 61
Table 4-2 Schedule of Required Questionnaires..73
Table 4-3 Data Sources and Analyses for Research Question-1......... 77
Table 4-4 Data Sources and Analyses for Research Question-2 79
Table 4-5 Data Sources and Analyses for Research Question-3.................................. 80
Table 4-6 Data Sources and Analyses for Research Question-4 81
Table 4-7 Data Sources and Analyses for Research Question-5 83
Table 5-1 Summary of Raw and Calculated Variables with Mean Scores..................86
Table 5-2 Mean Performance Measures among Low and High Group

Sub-Components of Self-Regulation 93
Table 5-3 Mean Performance Measures among Low and High

Math Experience Groups ..96
Table 5-4 Mean Performance Measures among Low and High

Computer Experience Groups.. 99
Table 5-5 Mean Performance Measures among Low and High

Sub-Components of Self-Regulation as Task Difficulty Increased 101
Table 5-6 Percentage Difference in Performance Measures among

Sub-Components of Self-Regulation as Task Difficulty Increased 103
Table 5-7 Frequencies of Exercises Selected for Qualitative Analysis of Common

Mistakes.. 114
Table 5-8 Analytic Terms for Major Domains Related to Changes in

Student Code... 115
Table 5-9 Sub-Domains of Major Domains of Changes Students

Make to Source Code............................... 122

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

First and foremost, I want to thank to my dissertation committee chairperson, Dr.

Neal Strudler, for being the mentor and guide he has been since the beginning of this

project and for the last five years of my life. I also want to thank my dissertation

committee members: Dr. Randy Boone, Dr. Kendall Hartley, and Dr. Eunsook Hong for

their continued support throughout this project. A very special thank you belongs to Dr.

Chongwei Ran, programmer extraordinaire, who invested a piece of his soul into the CS

Online Web system. I'm forever grateful for my beautiful wife, Margaret, who supported

me every step of the way; she is truly the other side of me. My wonderful kids Bethany,

Michael, and Timmy deserve extra thanks for understanding the countless hours invested

And finally, praises to Don Reynolds and Randy Caldwell who kept my mind fresh by

listening, providing unending encouragement and prayers, performing music together,

and being there on some very long runs.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ABSTRACT... iii

LIST OF FIGURES................................... vi

LIST OF TABLES..vii

ACKNOWLEDGMENTS.. viii

CHAPTER 1 INTRODUCTION... 1
Purpose of the Study... 1
Background..1
Setting... 5
Theoretical Framework.. 6
Significance..13
Research Questions........................ 14

CHAPTER 2 REVIEW OF THE LITERATURE.. 15
Rationale for the Development of CS Online...15
Basic Design Strategies for the Development of CS Online...................................19
Literature Related to the Research Questions...34

CHAPTER 3 DEVELOPMENT OF CS ONLINE.. 43
Environmental Design Strategies and CS Online Attributes.................................. 44
Pedagogical Design Strategies and CS Online Attributes...................................... 46
Methodological Design Strategies and CS Online Attributes................................. 53
Technical Design Strategies and CS Online Attributes...54
Structural Design Strategies and CS Online Attributes 56

CHAPTER 4 PRELIMINARY VALIDATION EFFORT.. 58
Participants....................... 58
Instructional Materials 59
Measures... 59
Data Sources... 72
Procedure.................. 73
Summary of Research Questions...75

CHAPTER 5 RESULTS................... 84
Summary of Questionnaire Results.. 85

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research Question Findings................................. 89

CHAPTER 6 DISCUSSION ... 127
Discussion of Results .. 127
Implications for Practice... .. 135
Implications for Research.... ... 137
The Efficacy of CS Online as an Instructional Environment 141
Limitations of the Study.. 143
Concluding Remarks.. 144

APPENDIX .. 145
Expanded Table of Contents, Examples, and Exercises.................................. 145
Three Hint Levels and the Exercise Solution Example 154
Questionnaires used in the Study... 158
Source Code Comparison Sample 163
Comparison Report for JavaScript Error Domains
CS Online, Spring 2003.. 166

REFERENCES ... 202

VITA.. 220

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1

INTRODUCTION

Purpose of the Study

The purpose of the study was to develop a Web-based learning system as a teaching

and learning tool for introductory computer science concepts, and then perform

preliminary validation of the system’s efficacy as an instructional environment. More

specifically, measures of student self-regulation, math experience, and computer

experience would be compared to various performance measures resulting from use of

the system. Common mistakes made by students while solving computer programs would

also be observed.

Background

Computer science education has undergone radical change over the last ten years and,

as a result, has become a fragmented and misunderstood subject (Deek & Kimmel, 1998;

Tucker, 1996). Many complex factors have contributed to this problem, but some believe

that, at the core, is the lack of a widely adopted high school curriculum and standards for

teacher certification (Deek & Kimmel, 1999). While this is evidenced by surveys that

reported continued fragmentation over the course of ten years (Stephenson, 1997; Taylor

& Norris, 1988), and national and state standards have ignored computer science as an

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

academic discipline (CDE, 1996; NDE, 2000; NCGE, 1994; NCTM, 1989; NJDE, 1996;

NRC, 1996; NYDE, 1994), other factors may be equal if not greater contributors to the

problem.

To begin, the first Advanced Placement (AP) Computer Science Exam was offered in

1984 using Pascal as the programming language. The exam was then changed to C++ in

May of 1999, and then changed again in 2003 to Java (College Board, 2003a). These

changes have had a disastrous impact on the teacher workforce who, while not yet

comfortable with C++, have suddenly found themselves facing a bigger wave of difficult

and complex change:

At present 79% of high school computer science teachers rated their current

knowledge of Java as poor to fair and only 3% rated their knowledge as excellent.

At the same time, 86% rated their personal need to learn Java as very important to

critical and 89% indicated that they needed to do so within one year. (Stephenson,

2002, p. 2)

Java has evolved to become a complex language. With close to 50,000 public methods in

the Java 2 application programming interface (API) hierarchy (Sun, 2003), teachers have

been required to achieve the extremely difficult, if not impossible task of teaching the

language with little to no training and support in the schools (Stephenson, 2002). While

some authors have suggested that Java has achieved the same level of academic

prominence Pascal reached in the 1980’s (Wallace, Martin, & Lang, 1997), others have

lamented the complexity of Java and other modem languages for introductory courses

(Wirth, 2002). Despite evidence of dissatisfaction with Java as a teaching language

(Biddle & Tempero, 1998; Hadjerrouit, 1998; Martin, 1998), Java appears more times in

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

paper titles accepted for the Special Interest Group in Computer Science Education

(SIGSCE) annual symposium over the last eight years than all other languages combined

(Roberts, 2003).

At the same time, declining interest and enrollment in high school computer science

courses has become a trend over the last twenty years, with students taking more courses

in business services, computer technology, graphics, computer applications, and drafting

(Levesque & Hudson, 2003). In many schools, technology programs have merged with

computer science, and a new focus on the tool aspect of technology has supplanted the

once academic nature of the subject. This shift has occurred for three main reasons: (a)

industrial arts departments are being replaced by technology departments, with industrial

arts subjects being renamed as technology, (b) people with various experiences and

backgrounds are brought in as teachers into technology departments, and (c) computer

science has been pushed aside as the wider need for technology integration into the

curriculum has increased (Deek & Kimmel, 1999). As a result, the definition of computer

science has been broadened to include technology education subjects, producing

confusion over its meaning.

It is clear to the present investigator that the true benefits of secondary computer

science education have been lost among the frenzy for the latest waves of innovation and

change, with a greater emphasis placed on language. What are the benefits? Research has

unequivocally established that computer programming instruction improves problem

solving skills (PSS) significantly enough to warrant that programming (in any language)

should be included in the curriculum as an alternative for teaching problem solving in all

subject areas (Casey, 1997). Such skills are vital for students to function in today’s

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complex society. Equally important are the cognitive skills that are gained and transferred

through the application of algorithmic and logical thinking (Gesler & Kaplan, 1993;

Greenburg, 1991; Jang, 1992; Martin & Heame, 1990; McCoy, 1988; Shih & Alessi,

1994).

The time has come for educators to take responsibility for the definition and delivery

of computer science education (Wirth, 2002). While efforts have already begun with

standardization of a definition of computer science (Tucker, 2003) and a dream of a

scaled-down version of Java (Roberts, 2003), the greater challenge lies in recasting the

purpose of computer science education and making it motivational, understandable, and

available to students of all ages and backgrounds. The challenge is taken by envisioning

learning opportunities that redirect the emphasis away from language and complexity and

balances the greater need for cognitive skills development and problem solving. Learning

opportunities like these render language as an object of secondary importance (Milbrandt,

1995), and computer science education is transformed into an instructional paradigm

where students acquire useful knowledge that transfers into other subject areas and real-

world contexts (Wilkerson & Gijselaers, 1996). The alternative is the risk of continued

decline in interest and enrollments, increased priority for technical education, and

computer science becoming narrow and esoteric, reaching only the highest achievers. The

present study seeks to address the above challenges by developing a Web-based learning

system as a teaching and learning tool for introductory computer science education, and

then performing preliminary validation of the system’s efficacy as an instructional

environment.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Setting

Computer science education in public and private schools in Southern Nevada has

become fragmented, misunderstood, and for the most part, absorbed into newly defined

technical education programs. While efforts have been made to provide training, teachers

still feel isolated, unprepared to teach computer programming, and have experienced

declining student interest in the subject. The sentiments shared by one teacher leader in a

large high school in the Clark County School District reinforce the current situation:

AP Computer Science has never been much of an option at my school.

Unfortunately, the interest level has not been terribly high... The only problem

could be selling an AP class to my principal if there are somewhere between 5-10

students... I don't think it would work very well combined with another class... I

believe there is a seminar coming up regarding the AP requirements and Java

curriculum on November 15... I hadn't planned on going. (B. Bogart, personal

communication, October 22, 2003)

Similar conditions exist in other schools throughout the region, with some unable to offer

courses or canceling programs because of difficulty in finding qualified teachers or

experiencing declining student interest. The present study was established to develop and

pilot the use of a hybrid instructional system to meet the challenges and renew interest in

computer science as an academic discipline for students of all ages. Computer Science

Online (CS Online) was conceptualized in the spring of 2002 and was subsequently

designed and launched in the spring of 2003 as the development project for the pilot

study. The term hybrid is used to describe a Web-based system that can be used for both

online and classroom-based instruction. In addition, the system was concurrently used as

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

an instructional tool for the Methods of Teaching Computer Programming course at the

University of Nevada, Las Vegas (UNLV), in which twelve graduate students

participated as teaching assistants (TA) to evaluate and grade the work of high school

students who participated in the study. CS Online is accessible at

http://www.csonline.ccsd.net.

Theoretical Framework

The CS Online design and subsequent investigation was inspired by and built

upon the Reading approach to teaching programming for high school students (Van

Merrienboer & Krammer, 1987). Figure 1-1 depicts the theoretical framework for the

study. The model consists of concentric shapes that circumscribe supporting bodies of

research and build the foundation for effective computer-programming methodology for

the purpose of the present study.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.csonline.ccsd.net

www.manaraa.com

Self Regulation

Hypermedia

Worked Examples

In-Text Examples

Example
Problem

Pairs

Reading
Approach
to Teaching

Programming

Incom plete
Examples

In-Exercise Examples

Figure 1-1. CS Online Theoretical Framework.

Beginning at the center, the Reading approach is presented as an effective method of

teaching introductory programming. Because this approach is dependent on the

application of worked examples, worked examples research, the next concentric shape

moving outward, is then presented. Because of its relationship to Web-based learning,

hypermedia research and its effect on learning is then presented. Finally, a review of self­

regulation is presented as an individual learning characteristic that might be an important

factor for students interested in learning programming online.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Reading Approach

The center of the framework represents the Reading approach to teaching

programming. Following a comprehensive review of teaching methodologies related to

computer programming, Van Merrienboer & Rrammer (1987) classified instructional

methodologies into three categorical strategies: (a) the Expert Approach, (b) the Spiral

approach, and (c) The Reading approach. The approaches differ in that the Expert

approach presents motivational, complex problems requiring top-down solutions; the

Spiral approach emphasizes acquisition of semantic and syntactical skills by mastering

basic language constructs and then building; and the Reading approach recommends that

students begin by understanding relatively complex solved problems and then modifying

and amplifying the solutions. Following a comparison of six instructional tactics

spanning each strategy, the researchers concluded that the Reading approach is superior

to the other two in five out of six instructional tactics. The tactics include computer

modeling, programming plans, design diagrams, worked-out examples, basic skills, and

task variation.

At the heart of the Reading approach is the use of worked-out examples, referred to

hereafter as worked examples. Step-1 of the Reading approach involves running working

programs, observing their behavior, then evaluating their strengths and weaknesses. In

Step-2, students read, run, and trace well-structured programs. In Step-3, students modify

and amplify existing programs; and in Step-4, students generate completely new

programs on their own.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Worked Examples

While the Reading approach was shown to be a most effective instructional method,

at the core of the approach is the application of solved programming examples that

students can run, modify, and amplify in support of underlying concepts. Worked

examples research has provided evidence that various types of intra- and inter-example

design features and the individual characteristic of self-explanation can lead to more

effective learning (Atkinson, Derry, Renkl & Wortham, 2000). Self-explanation is what

occurs when a student attempts to fill in the gaps of poorly elaborated or intentionally

omitted content in worked example design (Chi, Bassok, Lewis, Reimann, & Glaser,

1989). In recent years, worked examples research has gained considerable attention and

has made contributions to improved instructional design. Considering the Reading

approach’s dependence on worked examples, something should be known about the

effectiveness of their design and delivery in various learning environments. It has been

shown that worked examples are most effective when used in instructional settings that

promote skills acquisition - like computer programming (Anderson, Fincham, &

Douglass, 1997).

The design or structure of worked examples plays a critical role in their effectiveness

in learning (Mwangi & Sweller, 1998). Design that ignores intra-example features can

lead to the split attention effect, which can then degrade learning (Taramizi & Sweller,

1988). Intra-example features include integrating text and diagrams, integrating aural and

visual information, and integrating steps and sub-goals (Atkinson et al., 2000). On the

contrary, carefully designed worked examples can reduce or eliminate the split attention

effect and result in cognitive load reduction (Cooper, 1998; Paas, 1992). Equally

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

important to the structure of the material used in lessons is the sequence in which that

material is presented (Bruner, 1966; Glaser, 1976). Inter-example feature design focuses

on several factors including the number of examples to use, how and whether examples

should be varied within a lesson, how themes might be varied, and how practice and

examples should be integrated. To this point, the cognitive consequences of presentation

format have been more emphasized as a research discipline than how the worked

examples are applied and used (Ward & Sweller, 1990).

In the present study, students were engaged with two types of worked examples: in-

text and in-exercise. In-text examples were embedded in chapter sections, and in-exercise

examples were coupled with section-end exercises. There were at least two in-text

examples per section that the students could view, run, or modify and run at any time.

Multiple examples in section content have been shown to facilitate improved learning

over the use of a single example (Reed & Bolstad, 1991). In-exercise examples were

available to assist with problem solutions and were presented in two general forms: (a)

example-problem pairs, where the problem was associated with the in-text worked

example that was most closely resembled the exercise, and (b) incomplete examples, also

referred to as hints or partial solutions, which were available at three levels. Example-

problem pairs have been shown to enhance skill acquisition in a most effective manner

(Trafton & Reiser, 1993). Stark (1999) found that, compared to studying complete

examples, incomplete examples are beneficial to produce higher levels of effective self­

explanation.

To extend the current research focus on presentation format, the present study looked

deeply into relationships between individual learner characteristics and dependence on

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

worked example use. More specifically, the study explored how students with varying

levels of self-regulation, prior math experience, and prior computer experience depended

on worked examples. Knowing that some students would rely heavily on examples

during problem solving (Chi et a l, 1989), the study sought to determine if that reliance

and subsequent success (or failure) could be attributed to individual characteristics.

Cognition and Hypermedia Environments

CS Online was designed to be a hybrid system, a tool that could be used in the

classroom and online. The hybrid approach is important since virtual learning has been

established as the next wave in technology-based K-12 learning (WestEd, 2001). While

this type of learning has gained widespread support from state and local policymakers,

education researchers, and business leaders (Education Week, 2002), others are skeptical

about the promises held by this approach to learning. Considering the Web as a form of

hypermedia, research has yet to reveal gains achieved through the use of media or

interface design (Dillon & Gabbard, 1998). Because of a lack of evidence in support of

its benefit, the focus of research has shifted from the effects of media toward individual

learning characteristics and learning in new technology environments. Individual

characteristics like prior knowledge (Shin, Schallert, & Savenye, 1994), past experience

(Lanza & Roselli, 1991), ability (Ormrod, 1999), learning style (Ormrod, 1999), and self­

regulation (Zimmerman, 2000) have been shown to be important learner variables. The

present study sought to determine, through measures of self-regulation, if students could

successfully solve problems in the context of a hybrid environment where cognitive skills

might be affected.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-Regulation

While it is clear that appropriate application of worked examples can improve

learning in a traditional setting, it is not yet known how they might affect learning in a

Web-based environment. Granted that media’s effect on learning might be

inconsequential, student dependence on worked examples in a Web-based environment

might then be attributed more to individual learning characteristics, such as math

experience, computer experience, or self-regulation. A clearer understanding of these

dependencies can lead to better understanding of the constructs needed for good,

scientifically-based, instructional design. It is anticipated that self-regulation will be an

important factor in student learning in Web-based environments (Hartley & Bendixen,

2000; Foreman, 1990).

Self-regulation refers to self-generated thoughts, feelings, and actions that are planned

and cyclically adapted to the attainment of personal goals. It entails not only behavioral

skill in managing one’s environment, but also the knowledge and sense to enact this skill

in relevant contexts (Zimmerman, 2000). More specifically, self-regulated learning is

comprised of three dimensions: meta-cognition, goal setting and monitoring one’s

actions (Ridley, Schutz, Glanz, & Weinstein, 1992). These dimensions can be sub­

divided into: (a) self-motivation, (b) goal setting, (c) planning, (d) attention control, (e)

application of learning strategies, (f) self-monitoring, and (g) self-evaluation (Ormrod,

1999).

Hong (1998) distinguishes two different classes of personality or psychological

attributes that can be applied to self-regulation - trait and state constructs. State self­

regulation is conceptualized as a transitory state that varies depending on situational

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cognitive demands. Trait self-regulation is a performance attribute that remains relatively

stable across varying cognitive demands (Hong, 2001a). While the study of both

attributes is important for determining individual differences in learning and

performance, the present study focused on measures of state self-regulation and student

dependence on various types of worked examples.

Significance

The fixture of computer science education will depend on many factors, the most

important of which might be a revitalization of interest in the subject (Stephenson, 1997).

The design and delivery of CS Online brings a research-based learning opportunity to

Southern Nevada for the purpose of equipping teachers with self-paced professional

development, management tools, and rekindling interest in the subject by providing rich,

motivational PBL-based learning content to students in classrooms and online. In

addition, through preliminary validation of its efficacy as an instructional environment,

results of the pilot study can inform the educational community of an applicable solution

model in response to the issues. Furthermore, while critics and supporters of virtual

learning agree that insufficient research has been conducted to determine the

effectiveness of Web-based learning (Paloff & Pratt, 2001), findings from the study can

inform the research community that students of varying abilities can successfully learn

programming in such an environment. Finally, research involving individual learning

characteristics might describe the competencies students will need to succeed. More

specifically, insight might be gained into how measures of individual characteristics

might describe problem solving online; including the types of learners that are likely to

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

succeed, the types of problem-solving strategies that are used, how much effort students

are willing to expend, and how learner characteristics are related to the use of hints.

Research Questions

The present study resulted in the development of CS Online and subsequent

preliminary validation of the system’s efficacy as a learning environment. In particular,

the study sought to answer the following five questions:

1. How do students with low versus high self-regulatory skills perform in the use of in-

text worked examples, in-exercise worked examples, hints, optional exercises, and

problem-solving scores?

2. How do students with low versus high math experience perform in the use of in-text

worked examples, in-exercise worked examples, hints, optional exercises, and

average number of attempts to solve problems, and problem-solving scores?

3. How do students with low versus high programming experience perform in the use of

in-text worked examples, in-exercise worked examples, hints, optional exercises, and

average number of attempts to solve problems, and problem-solving scores?

4. How do students with low versus high self-regulatory skills perform in the use of in-

text worked examples, in-exercise worked examples, hints, optional exercises,

average number of attempts to solve problems, and problem-solving scores as the task

difficulty increases?

5. What common mistakes do students make in solving programming problems?

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

REVIEW OF THE LITERATURE

The review of the literature is divided into three major parts to support the

development and preliminary validation aspects of the current study. Part 1 provides the

rationale for the development of the CS Online learning environment. Part 2 provides

fundamental design strategies for the development of CS Online. Part 3 reviews literature

related to the research questions including cognitive load reduction, worked examples,

and self-regulation.

Part 1: Rationale for the Development of CS Online

Various factors have contributed to the present condition of computer science

education, many of which were motivating factors for the concept and subsequent

development of CS Online. These include a lack of standards for a high school

curriculum and teacher certification, professional development issues, increasing growth

of technical education and subsequent declining enrollments in computer science courses,

increasing complexity of programming languages, accessibility to resources, and cost

factors. In this section, a review of the literature related to these factors is presented in the

order listed above.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lack o f Standards fo r a High School Curriculum and Teacher Certification

Computer science is widely accepted as an academic discipline in higher education

and as a profession, but its status in secondary education is perceived quite differently.

Although efforts were made in the mid 1980’s by the Association for Computing

Machinery (ACM) to standardize the curriculum (ACM, 1985 a) and to define standards

for teacher certification (ACM, 1985b), these efforts have been slow and non-systemic

(Deek & Kimmel, 1999). This is evidenced by reports of the absence of a standardized or

widely implemented high-school curriculum, and lack of states’ adoption of teacher

certification standards ten years later (Stephenson, 1997; Tucker, 1996). National and

state standards have also ignored computer science as an academic discipline (CDE,

1996; NDE, 2003; NCGE, 1994; NCTM, 1989; NJDE, 1996; NRC, 1996; NYDE, 1994).

As a result, computer science remains a highly fragmented and misunderstood subject

(Deek & Kimmel, 1998; Tucker, 1996).

In an effort to raise awareness and focus national attention to these issues, the

International Society for Technology in Education (ISTE) and the ACM have made

efforts to: (a) define curriculum frameworks content standards for computer science

education, (b) define teacher certification standards, (c) elevate computer science as an

academic discipline in departments of education and other appropriate agencies, (d)

prescribe teacher preparation programs that equip teachers with the content skills and

knowledge they need for effective learning in the classroom, and (e) define provisions for

re-training teachers currently in the field (ACM 1985a, 1985b, 1993; ISTE, 1992).

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Professional Development Issues

Dramatic changes in technology have made it difficult for computer science teachers

to receive the training they need. In fact, “no mechanisms exist to train teachers... or

keep them up to date with the field.” (Tucker, 1996). Evidence has suggested that while

coursework still exists in some teacher preparation programs, the emphasis has shifted

away from programming toward hypermedia and authoring tools, with programming only

being offered amid controversy and debate (Kelley, 1994). If this trend continues,

teachers will be left behind, unequipped to face the challenges of the computer science

classroom. A recent case study on the state of computer science education in New Jersey

found that teachers were not receiving the foundational coursework necessary for a

meaningful and adequate professional development program - 57% of the surveyed

teachers had not received any kind of training within five years of the survey (Deek &

Kimmel, 1999). The ACM is presently conducting a nationwide survey to assess the state

of computer science education and professional development needs (ACM, 2003).

Increasing Growth o f Technical Education

Technology education has rapidly become a priority as new technologies have

emerged, generating new interest and demand. Course offerings in subjects including

productivity applications, computer technology, graphics, computer applications,

drafting, multimedia, authoring, web page design networks, and distance learning have

attracted students away from taking computer science courses (Deek & Kimmell, 1999;

Levesque & Hudson, 2003). In many schools, technology programs have merged with

computer science, and a new focus on the tool aspect of technology has supplanted the

once academic nature of the subject. The shift in interest is evidenced by a declining

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

average number of computer programming credits earned per student. In 1998, 0.04

credits were earned per student compared to 0.13 in 1990, when computer science

education reached its peak. Students in 1998 earned 0.50 credits on the average in

business and computer applications compared to 0.33 in 1990 (Levesque & Hudson,

2003).

In addition to dramatic changes in technology, changes in technology education have

also occurred for three main reasons: (a) industrial arts departments are being replaced

by technology departments, with industrial arts subjects being renamed as technology, (b)

people with various experiences and backgrounds are brought in as teachers into

technology departments, and (c) computer science has been pushed aside as the wider

need for technology integration into the curriculum has increased (Deek & Kimmel,

1999). Despite efforts to promote computer science education and advocate teacher

training programs, many schools continue to offer computer science but few students

choose to take it; computer science remains an elective subject; and most computer

science programs reside in math, science, technology, or business departments with

teachers certified in various areas (Deek & Kimmel, 1998; Kushan, 1994).

Increasing Complexity o f Languages

Long before the College Board moved the AP computer science program to Java, the

language had already generated interest in the professional and computer science

education communities. Java has appeared more times in professional journal article

titles and papers accepted for the SIGSCE annual symposium over the last eight years

than all other languages combined (Roberts, 2003). The use of Java for introductory

computer science courses was evident as far back as 1998 (Stevenson & West, 1998) and

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

continues to gain momentum now that it has entered the AP world. Unfortunately,

because of its complexity and instability, some view the language as a critical problem for

introductory courses (Wirth, 2002). Roberts (2003) defines complexity as “the number of

programming details that students must master has grown much faster than the

corresponding number of high-level concepts” (p. 1). He further defines instability as “

the languages, libraries, and tools on which introductory computer science education

depends are changing more rapidly than they have in the past” (p. 1). Because of these

two important factors, Java has evolved to become a complex language. With close to

50,000 public methods in the Java 2 API hierarchy (Sun Microsystems, 2003), teachers

have been required to teach the language with little to no training and support in the

schools (Stephenson, 2002). To remedy this problem, the present goal of the ACM

Education Board is to review the Java language, APIs, and tools from the perspective of

introductory computing education and to develop a smaller, more usable subset of the

language for introductory computer science. JavaScript was chosen as the language for

CS Online because of its resemblance to Java and ease of use.

Part 2: Basic Design Strategies for the Development of CS Online

A clear understanding of the reasons for offering computer science in high schools

combined with effective methods for teaching programming can inform various

instructional design strategies for delivering computer science education. This section

reviews literature on the reasons for teaching computer programming followed by

advantages of teaching and learning computer programming, methods of teaching

programming, choice of language, and course management. These areas inform

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

fundamental CS Online design strategies as they apply toward increasing interest in

computer science, reducing complexity in managing courses, and providing effective

learning opportunities for students and teachers.

Reasons fo r Computer Programming Education

Radical change and apparent declining interest in computer science education beg the

question of why computer science courses should continue to be offered in secondary

schools. The three major reasons for offering computer programming in secondary

schools reveal a wide range of influences that have shaped computer science instruction

as we know it today (Goldenson, 1996). The Imperative for Educational Reform in 1983

and the National Commission on Excellence in Education report challenged Americans to

embrace change through the use of technology. This report was a catalyst leading to the

vocational education movement, the first reason in an effort to increase the population’s

technical skill level for greater opportunity in the professional work place (Campbell,

1984). Computer programming instruction was an offshoot of this proposal as part of the

technology preparation agenda. The second reason is preparation for college. Many high

schools provide AP computer programming courses in preparation for advanced study in

college (Connolly, 1996). The third reason is an attempt to increase academic

achievement in other subject areas through the promotion of analytical and creative

thinking skills. It is viewed that generalization and transfer of cognitive skill growth

through study of computer programming can have a dramatic impact on how students

perform in other subject areas like math, science, and expository writing (Goldenson,

1996).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A fourth reason might be the increasing number of programmable applications and

systems that are more accessible to users today. Examples include programming dynamic

Web pages using Netscape JavaScript 1.5 or server controlled scripts like Macromedia

Cold Fusion MX 6.1, Sun Java Server Pages 2.0 (JSP), Microsoft Active Server Pages

3.0 (ASP), or Hypertext Pre-Processor 4.3 (PHP); spreadsheet programming using

embedded functions; and customized database application design using Microsoft Visual

Basic for Applications 6.0 (VBA). Underlying multimedia-authoring tools like

Macromedia Flash MX 2004 and Director MX are programming languages that, if

mastered, equip the designer with an extremely high level of flexibility and functionality.

The need to know programming appears to be greater now than ever.

Advantages to Teaching and Learning Programming

Much research on the benefits of programming and learning was conducted in the

mid to late 1980’s and early into the 1990’s. The majority of research related to this topic

ended in the early 1990’s, closely following the peak of interest in computer science

education (Levesque & Hudson, 2003). The introduction of LOGO by Papert in the late

1970s (the original version was working in 1967) launched a wave of interest in trying to

find out how programming might affect the cognitive processes of students of all ages

(LOGO Foundation, 2002). The bulk of the findings relates most directly to the

elementary grades with some valuable information available for secondary instruction.

Because of the magnitude of information available during the 1980’s and the archaic

nature of languages studied, this research review spans a period of 15 years - from 1987

to the present. The languages dominating this body of literature include LOGO, BASIC,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and Pascal, in descending order of importance. Surprisingly, no other languages are

referenced.

The synthesis of findings from this review can be classified into four general

categories and are presented in subsequent sections in the following order: (a) cognitive

skills affecting programming concept acquisition, (b) programming and it’s affect on

cognitive skills, (c) transfer of programming skills into other academic areas, and (d)

general topics of interest.

Cognitive skills affecting Programming Concept Acquisition

Relationship between cognitive science and instructional design. Human cognitive

skill development has been shown to affect a student’s ability to learn programming

concepts. In fact, while the fields of cognitive science and instructional design have their

own objects of study, they share a common interest in cognition and performance as part

of instructional systems. From a case study based on experience in teaching introductory

computer programming, Van Merrienboer (1990b) concluded that both sciences may

reciprocally influence one another. These findings suggest that the sciences must work

together to reach their common goals.

Teaching Methodology. Teaching methodology in the context of computer

programming instruction can affect student cognitive development. A study comparing

reflective and inquiry-based teaching practices for 2nd through 5th grade students revealed

that students experiencing the reflective context developed beliefs about Logo

programming practices that were tightly coupled with their performance (Lehrer & Jeong,

1999). Teaching with analogies and elaboration and placement of those analogies was

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

demonstrated to significantly improve concept recall for students learning a programming

language (Lai & Repman, 1996).

Pre-cursors to Successful Programming. Studies have shown that programming

course primers can increase learners’ cognitive ability and improved performance in

programming courses. Allan and Kolesar (1996) suggest a preparatory Computer

Science-0 (CS 0) course to countervail conceptual weaknesses observed in novice

programmers. Preparatory courses demonstrating cognitive improvement involve

students with: 1) experiencing good user interfaces before being asked to design one, 2)

playing with data types and round-off errors using spreadsheets, 3) understanding how an

application program saves time and effort resources, and 4) developing good problem

solving techniques vital to good programming practice. Miller (1988) demonstrated that

pre-programming instruction involving teacher-designed graphical Logo programs and

multimedia techniques, combined with modem technology, resulted in higher order of

logical thinking skills such as critical thinking, problem-solving strategies, evaluation and

analysis, and creativity. Baylor and Kozbe (1998) suggest the use of a Personal

Intelligent Mentor (PIM) as an aid for students to develop logical and critical thinking

abilities essential for problem solving in preparation for learning computer programming.

The PIM they researched is a software tool that facilitates metacognitive development in

the domain of solving logic word puzzles.

Specific Cognitive Skills. Many components of human cognition have been

demonstrated to be required for students to perform better while learning computer

programming. A study examining the relationship between field-independence, spatial

visualization, logical reasoning, and direction following and initial acquisition of

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

programming competence suggests that individual differences be considered in all

programming instruction regardless of language used and student age (Foreman, 1990).

Worked examples as a cognitive load reduction effect are recommended based on

findings from a study on automation and schema acquisition in learning beginning

computer programming (Van Merrienboer & Paas, 1990). Automation and schema

acquisition are generally considered important processes in learning cognitive skills.

Intrinsic Characteristics. Intrinsic characteristics can also play a vital role in a

student’s ability to learn programming skills. A study conducted by Johnson and Johnson

(1992) revealed that programming competence increased as stress, neuroticism,

creativity, and age increased. The study also showed that females demonstrate better

computing competencies than males.

Programming and Its Affect on Cognitive Skills

Cognitive Skills Development. Problem solving skills (PSS) seems to be the

predominant cognitive skill most directly impacted by learning programming. In this

discussion, it will be assumed that choice of programming language is independent of

cognitive skill attainment since underlying constructs like if-then-else do not change

among languages (Sebesta, 1996). Following a summary of PSS affects, other cognitive

skills, meta-cognitive skills, and potential for confusion will be addressed. The majority

of research in cognitive development and programming targets students in the elementary

grades, most likely because of Logo’s appeal to elementary teachers and younger

children. Unless noted otherwise, studies are assumed to target this age range.

Problem Solving Skills (PSS). The most researched cognitive skill affected by

computer programming instruction is that of PSS. Some important outgrowths of this

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

research include recommendations to include computer programming (any language) in

the curriculum as an alternative for teaching problem solving (Casey, 1997), include

Logo to teach problem solving strategies (Swan & Black, 1993), involve the use of Lego

and Logo to teach problem solving skills (Palumbo & Palumbo, 1993), and employ

programming instruction to foster self-regulation, motivation, and discovery (Casey,

1997). Programming instruction and its affect on problem solving transfers into all

academic areas of study. Through project-based learning, CS Online was developed to

emphasize problem-solving skills through problems set in real world contexts.

Other Cognitive Skills. Various studies were conducted in the 1990’s to demonstrate

the effects of programming on various other cognitive skills. Logical thinking and

sophisticated mathematical relationships (more of a transfer issue but included here

because of logic) have been shown to be better understood by unsophisticated college

students if they have some level of programming experience (Wieschenberg, 1999).

Wieschenberg asserts that Math and computer programming are very similar - they both

involve logical steps, which eventually result in a desired solution. In addition to logical

reasoning, inductive and deductive reasoning (Kynigos, 1993), social problem solving

and motivation (Suomala, 1996), cooperation (Lai, 1993), attitude toward learning

(Dalton & Goodrum, 1991), conditional reasoning (Seidman, 1990), and spatial relation

comprehension (Miller, 1988) were shown to improve with programming instruction.

Logo was the language used in each of the aforementioned studies with the exception

of Wieschenberg’s study. Object-oriented programming, a form of hypermedia authoring,

has been demonstrated to effect creative thinking (Liu, 1998). This type of programming

was found to “promote creative thinking in a variety of areas including the process of

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sensing problems or gaps in information, forming ideas or hypotheses, testing and

modifying these hypotheses, and communicating the results.” (Liu, 1998, p. 27). In study

to test for critical thinking skill development, three groups of high school students were

tested using the Watson-Glaser Critical Thinking Appraisal: participants in a first-year

BASIC class, participants in a first-year Pascal class, and above-average students in other

classes who had no experience in programming. Students enrolled in both programming

classes scored significantly higher than their non-programming counterparts (Jones,

1988). In summary, a meta-analysis of 65 studies on programming affect on student

cognitive skills shows that students having computer programming experiences scored an

average of 16 percentile points higher on various cognitive ability tests than did students

who did not (Liao, 1990).

Transfer to other Subject Areas. Mathematics appears to be the subject area most

impacted by cognitive skills transfer due to programming (McCoy, 1988; McCoy &

Dodl, 1989; Oprea, 1988). In studies designed to measure cognitive skills transfer, it was

found that groups having programming instruction scored significantly higher than the

control groups in mathematical thinking skills, generalization, and understanding of

variables. One study compared four groups of high school students enrolled in calculus,

with two of the groups concurrently enrolled in Pascal programming. Students enrolled in

Pascal programming out-performed their counterparts in their math achievement tests

(Jang, 1992). In some cases, variables studied included gender, ability, socioeconomic

status, prior math experience, and access to a home computer (McCoy & Dodl, 1989).

Other affected subject areas include geography (Gesler & Kaplan, 1993), creative arts

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Greenburg, 1991), social studies (Martin & Heame, 1990), and science (Shih & Alessi,

1994).

The Methods o f Teaching Programming

Booth (1990) highlights three popular perspectives on teaching computer

programming including computer-oriented, product-oriented, and project-based learning

(PBL). PBL can also be referred to as problem-based learning. In the computer-oriented

approach, programming is perceived of as an activity that focuses on the computer.

Activities might involve writing programs that simulate aspects of the operating system

(OS) or hardware components like a binary adder. The product-oriented approach tends

to be more constructivist and focuses on the end goal of developing software products

such as RPGs, games in general, or utility programs. The PBL approach treats the

programming language as a matter of secondary importance, with emphasis placed on the

problem to be solved and the logical steps required for its solution (Milbrandt, 1995).

Brusilovsky (1994) identifies three other general approaches to teaching

programming include the incremental, mini-language, and sub-language methods. The

incremental approach treats the language as a sequence of subsets. Each subset

introduces new constructs while retaining all the constructs of the previous subsets. Each

subset is also precisely defined as a complete sub-unit that can be learned or implemented

without subsequent subsets. The mini-language approach is intended to design a small

and simple language to support introductory concepts of learning programming. The

development of the mini-language approach was seriously influenced by turtle graphics

of Logo (Papert, 1980). The sub-language approach is to design a special starting subset

of the full language containing several easily adaptable operations. As students master

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

concepts in the starting subset, additional concepts are added to build upon their

knowledge base - similar to outwardly growing concentric circles.

Various techniques have been introduced to enhance students’ acquisition of

programming concepts. Bayman and Mayer (1988) suggest using syntactical conceptual

models using the language’s inherent syntax structures. Their research demonstrates that

students trained in the use of language semantics and syntax, develop fewer

misconceptions and perform better on problem solving. Hancock (1988) suggests two

ideas that have proven valuable in teaching introductory programming. The mental model

encourages pure conceptualization and schema development and direct translation into

programming code. The programming plan encourages planning and documenting the

program before writing any code. McCoy (1990) identifies five critical phases essential

to successful computer programming: (a) general strategy, (b) planning, (c) logical

thinking, (d) variables, and (e) debugging. General strategy places emphasis on high-level

procedures and constructs needed to solving the problem. Planning involves sequence

and hierarchy of those constructs. Logical thinking involves the writing of code to realize

the solution. Variables cover the data structures used to process information and

numerical calculations. Debugging is the process of getting the program to work. McCoy

(1990) recommends these same strategies be used in solving complex mathematical

problems. Other research suggests five common structured programming techniques

applied in practitioner computer science: (a) problem definition, (b) algorithm design, (c)

code writing, (d) debugging, and (e) documentation (Dalbey & Linn, 1985; Goktepe,

1985; Kurland, 1984).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Various other methods have been shown to improve students’ ability to conceptualize

and master difficult concepts related to computer programming. Through the use of

concrete representations, collaboration in a structured laboratory environment, focused

completion-type exercises, and elaboration, students are better able to comprehend and

apply the concept of parameter passing (Madison, 1995). Mediational instructional

strategies have been shown to foster better learning in a Logo environment (Delcros &

Bums, 1993). Strategies that impact various cognitive styles have been suggested with a

preferential model having greater effect on learners than a compensatory model (Van

Merrienboer, 1990a). Based on ACT (Adaptive Control of Thought) theory and relevant

research, Van Merrienboer and Krammer (1987) identify tactics to design programming

courses based on the differences between declarative and procedural instructional

approaches. Some of these tactics include the expert, spiral, and reading approaches. The

Expert approach requires a top-down concept and implementation strategy involving

algorithm and program design. It was the least effective of these three approaches. In the

Spiral approach students were simultaneously presented with syntactic and semantic

knowledge in small incremental steps. As the students mastered basic skills, program

requirements progressed from simple to more complex, with design skills not required

until late in the course. The most effective approach was the Reading approach. This

four-step program permitted students to: (a) run pre-written programs, observe those

programs’ behaviors, then evaluate strengths and weaknesses, (b) hand-trace programs

and predict output, (c) modify and amplify existing programs, and (d) generate their own

programs. An unlimited array of creative and motivational ideas can be applied to teach

individual constructs like i f statements or iteration (Prichard, 1993; Tu & Falgout, 1995).

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Examples of these might include the iterative process of randomly generating license

plate or social security numbers, or artificially identifying a poker hand using nested i f

statements. The Reading Approach is the fundamental method CS Online employs for

teaching computer programming.

One relatively new approach to teaching programming was introduced by computer

science students at the University of Joensuu, Finland. The CANDLE model was

designed to support a student locally, in her Authentic learning NeeDs, in a Light way,

and through Electronic tools. What’s unique about this method is that programming

instruction was designed by college students to teach high school students through the

Internet (Haataja, Suhonen, Sutinen, &Torvinen, 2001). This PBL approach requires

students to assess the support they need to solve authentic learning problems (electronic

candles). BlueJ, a visual teaching environment and language, helps students in the

Candle program to understand object-oriented concepts such as objects and classes,

message passing, method invocation, and parameter passing (Rolling, 2000). The Jeliot I

environment allows students to write Java code in a Web text field then view the program

animated after submitting. Both tools utilize a highly visual approach to teaching

programming (Haajanen, Pesonius, Sutinen, Tarhio, Terasvirta, & Vannien, 1997). While

many universities offer programming courses to their students through the Internet, this

approach uniquely bridges the gap between secondary and higher education programming

skills.

Choice o f Language

The choice of language can be a difficult decision because of it’s direct impact on

computer programming instruction. In 1996, 442 higher education institutions reported

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

using one of 23 different languages for introductory computer science courses, with

Pascal leading the way with 35.5% of the responses (Connolly, 1996). Secondary

education has traditionally exercised similar freedom in the choice of language, despite

pressure exerted by higher education on the kind of computer science instruction that

should be taking place in schools (Becker & Graham, 2000). It was not too long ago that

BASIC and Logo were the de facto standards for teaching programming in K-12 aged

students. In support of advantages gained through new programming paradigms, Reed

and Liu (1992) demonstrated that BASIC produced sub-standard attitudes and learning

effects in comparison to emerging, object-oriented languages at that time like HyperTalk

and C++.

Trends in Advanced Placement (AP) test design provide insight into language choice

in the high schools. The first AP Computer Science Exam was offered in 1984 using

Pascal. The AP Computer Science A course was implemented in September 1991 and

used C++. The exam was changed from Pascal to C++ in May 1999 and was changed

again in 2003 from C++ to Java in time for the May 2004 exams (College Board, 2003a).

As can be seen, language standards quickly shifted from Pascal to C++ and then Java, all

within the course of about ten years. Furthermore, the AP Computer Science

Development Committee made a formal request in October of 2000 to the College Board

to recast the AP Computer Science curriculum. The revision would include object

orientation beginning with the 2003-2004 academic year (College Board, 2003b). The

request was approved in November of 2000 (College Board, 2003a).

Booth (1990) discusses the impact of conceptions of programming languages on

language selection and teaching methodology. The code perspective frames the language

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as a set of instructions, commands, symbols, and constmcts. This perspective leads to a

more formal approach to teaching and learning. The utility perspective views the

language as enabling the programmer to achieve certain effects. Choice of language in

this case depends on achieving specific outcomes such as developing a role playing game

(RPG) or multimedia effect. In this case, Visual Basic might be used to create an RPG

whereas Lingo might be used produce the multimedia effect. The communication

perspective views the language as a means of communication between the programmer

and the computer. The high level language (HLL) is seen as inferior to the more perfect

machine level language, which is more closely tied to the computer’s hardware. The

expression perspective views the language as a means of expressing a problem solution in

such a way that the computer can have an effect. In the present study, JavaScript was

chosen as the programming language because of its ease of use, relationship to web

pages, resemblance to Java, and potential appeal to a wide range of users.

Management Strategies

The management of computer science instruction can be a cumbersome process that

mainly involves the distribution of worked examples and evaluation of student work.

Since student work is normally stored on disks, workstations, or servers; teachers are

required either to work with students individually while programs are demonstrated,

collect disk-based or printed hard copies of source code, or view and run programs from

their own workstations. If software development tools are accessible only from school,

assessment is further limited to during the school day.

There are more difficult issues to manage besides the classroom, however, and that’s

namely what to teach. Confusion over what computer science is has made it difficult for

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

educators to determine what the subject should encompass. Efforts have been made to

develop a standard definition:

Computer science (CS) is the study of computers and computational processes

(known as “algorithms”), including their principals, their hardware and software

designs, their applications, and their impact on society. An algorithm is a precise

description of a solution to a computational problem. Programming is used to

implement algorithms (Tucker, 2003, p. 2).

While definitions and standards for computer science and a curriculum are necessary, a

recent survey revealed that suggested models proposed by the ACM have not received

widespread recognition or implementation in the United States. Only 12 of the 70

respondents indicated they have a state-mandated computer science curriculum at the

high school level, and 27 out of 70 replied that no certification is required by their states

(Tucker, 2003). These difficulties translate into widespread differences among states and

school districts in how course content is defined and delivered in the classroom. Although

model K-12 curricula continue to be developed by the ACM, nothing has been adopted or

recognized as a standard up to this point.

Part 3: Literature Related to the Research Questions

CS Online was developed fundamentally around the Reading method of teaching

programming. Inherent in the Reading Approach is the use of worked examples, which

serve as a cognitive load reduction technique (Paas, 1992). Since CS Online was

developed as a hybrid system, the opportunity for students to learn introductory computer

programming online is now available, and self-regulation might play an important role

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for online learners. This section reviews literature related to elements of the research

questions beginning with cognitive load reduction and followed by worked examples

research and self-regulation.

Cognitive Load Reduction

There is well-established research that supports the idea that the quality of

instructional design can be raised if consideration is given to the role and limitations of

working memory. The corpus of this research falls into the field of cognitive load theory

(Sweller, 1994). Working memory in human cognition is typically equated with

consciousness, and all other cognitive functioning is hidden from view until brought into

working memory (Sweller, Van Merrienboer, & Paas, 1998). Cognitive load refers to

“the total amount of mental activity imposed on working memory at any instance in time.

The major factor that contributes to cognitive load is the number of elements that need to

be attended to” (Cooper, 1998, p. 11). Since working memory is capable of holding only

seven information elements at a time (Miller, 1956), instructional design must consider

efficient ways by which learners can process and store facts, large and complex

interactions, and procedures. For example, the success of chess masters compared to

week-end hobbyists can be attributed mainly to their long-term memory of thousands of

board configurations - familiarity that came purely through experience playing the game

(Simon & Gilmartin, 1973). Interestingly, the same masters were no better than any

other player at reproducing random configurations with which they were not familiar.

When translating this notion to the field of instructional design, instruction must facilitate

domain specific knowledge acquisition, not general reasoning strategies that cannot

possibly be supported by human cognitive architecture (Sweller et a l, 1998).

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This can be accomplished by constructing ways to organize and store information into

long-term memory and reduce the load placed on working memory. “It can be argued that

these two functions should constitute the primary role of education and training systems”

(Sweller et al., 1998, p. 256). According to schema theory, information elements are

categorized and stored into long-term memory in the manner in which they will be used

(Chi, Glaser, & Rees, 1982). Long-term memory can be defined as the part of the

memory system that retains information for a relatively long period of time (Ormrod,

1999). A schema, while treated as a single element in working memory, has no limits on

its information capacity. Schema can also be retrieved and processed automatically - a

process whereby working memory is completely bypassed. In fact, all information can

be processed either consciously or automatically (Schneider & Shiffrin, 1977).

Automatic processing occurs with minimal conscious effort only after extensive practice.

It follows that instructional designs should consider schema automation to build task

consistency from problem to problem (Van Merrienboer, 1997; Van Merrienboer, Jelsma,

& Paas, 1992).

Various empirically demonstrated instructional procedures can be applied to reduce

cognitive load and benefit learning when used properly. Considering the already

suggested minimal effect of media on learning, the same techniques should be applicable

to virtual learning environments with similar expectations of success:

1. Goal free effect. A problem solving strategy that employs the goal free effect induces

a forward working solution path which imposes very low levels of cognitive load and

facilitates learning (Ayers, 1993; Owen & Sweller, 1985).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. Worked example and problem completion effect. Involves reconsidering the nature

and purpose of worked examples, especially where the problem space is large.

Worked examples are paired with similar un-worked or partially worked problems

(Paas, 1992), giving learners the opportunity to focus specifically on one solution

method at a time.

3. Split attention effect. This effect occurs when a learner is required to attend to

independent pictorial and textual information to understand a concept. The effect is

reduced or eliminated when both elements are integrated into a single source of

information (Chandler & Sweller, 1991; Sweller, Chandler, Tiemer, & Cooper,

1990). Additional sources of split attention include multiple sources of text (Chandler

& Sweller, 1992), mixing activities such a hard copy user’s guide and software

tutorial (Chandler & Sweller, 1996), and attending to multiple sources of information

or activities as in performing a textual or graphical search, or even pull-down menus

referenced in a user’s guide (Cooper, 1998).

4. Redundancy effect. If one source of information (pictorial or textual) is sufficient to

cover a concept, then additional information (integrated or not) should be completely

removed (Chandler & Sweller, 1991).

5. Modality effect. There is evidence supporting the idea that working memory can be

expanded through sensory modalities. Mixed-mode instructional formatting presents

information in ways that maximize this effect, as in pictorial information with text

presented auditorially (Mousavi, Low, & Sweller, 1995).

6. Variability effect. Although not listed by Cooper, Sweller et al. (1998) identifies this

sixth effect that, through variability of practice, encourages learners to develop

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

schemas that help increase the probability that they will identify similar features and

distinguish between relevant and irrelevant ones.

Worked Examples

A review of cognitive load reduction research clarifies the importance of worked

examples. Their importance in the current study requires further understanding of

research surrounding their use, including inter- and intra- example design instruction,

individual differences in example processing through self-explanations, and the impact of

situational factors on worked example comprehension (Atkinson, Derry, Renkl, &

Wortham, 2000). There is little doubt that worked examples are most effective when used

in instructional settings that promote skills acquisition - including computer

programming (Anderson, Fincham, & Douglass, 1997). Considering worked example

design to be an important aspect of cognitive load reduction, a clearer understanding of

worked example research will be beneficial for the design of instructional systems that

are dependent on the technique - including the delivery vehicle for the present study.

The design or structure of worked examples plays a critical role in their effectiveness

in learning (Mwangi & Sweller, 1998). The worked example and problem completion

cognitive load reduction technique is additionally supported by a study where LISP

programming students were exposed to six example-practice problem pairs, where each

example was immediately followed by a similar, but not identical practice problem. A

second group of students were presented all six examples immediately followed by all six

practice problems. The researchers observed that, as predicted, those students who were

exposed to example-problem pairs took less time and produced more accurate solutions

(Trafton & Reiser, 1993). Based on these findings, the authors concluded, “the most

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

efficient way to present material to acquire a skill is to present an example, then a similar

problem to solve immediately following” (p. 1022).

The pairing of an example with an exercise is considered to be an inter-example

feature. Other inter-example features include consideration of the use of multiple

examples in content, the effects of varying problem types within lessons, and the effects

of themes or “surface stories” on instruction. Multiple examples in section content have

been shown to facilitate improved learning over a single example (Reed & Bolstad,

1991). These authors concluded that only one additional example will improve learning,

and it is not necessary to provide an example for each possible exercise or test problem.

Paas and Van Merrienboer (1994) demonstrated that lessons designed with high

variability in content should be accompanied by worked example instruction rather than

immediate immersion into exercise solving. Quilici and Mayer (1996) demonstrated that

example groups designed to emphasize structure are more effective than those that

emphasize surface story. If a group of examples associated with varying concepts of

mixing is based upon the making of lemonade, then the group is said to be emphasized by

surface story - or the context of the examples - making lemonade. If each example takes

on a unique contextual setting, then the group is said to be emphasized by structure. An

example of structural emphasis might be a group of examples related to unit conversion,

where each example is based on a unique context - say space exploration and pool

chemistry, for example.

Much research has suggested that the intra-example features of worked examples also

play a critical role in their effectiveness (Catrambone, 1994a ; Mwangi & Sweller, 1998;

Ward & Sweller, 1990). In fact, if not constructed properly, “the structure of worked

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

examples may substantially compromise the benefits derived from studying them”

(Mwangi & Sweller, 1998, p. 174). On the contrary, carefully designed worked examples

can reduce or eliminate the split attention effect, resulting in cognitive load reduction

(Cooper, 1998; Paas, 1992). Some of the more important intra-example features include

integrating text and diagrams for reducing the split-attention effect (Tarmizi & Sweller,

1988), integrating aural and visual information (Mousavi, Low, & Sweller, 1995),

integrating steps and sub-goals (Catrambone, 1994a, 1994b, 1995a, 1995b, 1996), and

introducing incomplete examples (Stark, 1999), an important feature for the purpose of

the present study. Stark (1999) found that, compared to studying complete examples,

incomplete examples are beneficial to producing higher levels of effective self­

explanation. Self-explanation occurs when a student attempts to fill in the gaps of poorly

elaborated or intentionally omitted content in worked example design - students who self­

explain will outperform students who do not (Chi et al., 1989).

The findings of worked examples research may have significant implications in

constructivist learning environments where students engage in solving complex problems

(Williams & Hmelo, 1998). The literature suggests that students should thoroughly

review and engage in expert problem solutions before attempting to develop solutions on

their own. The present study depends on research in worked examples since they reside at

the core of the Reading approach and should, therefore, be designed and delivered

according to principals that best define their use.

Self-Regulation and Online Learning

Self-regulation refers to self-generated thoughts, feelings, and actions that are

planned and cyclically adapted to the attainment of personal goals. It entails not only

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

behavioral skill in managing one’s environment, but also the knowledge and the sense to

enact this skill in relevant contexts (Zimmerman, 2000). More specifically, self-regulated

learning is comprised of these general components (Ormrod, 1999):

1. Self-motivation. Self-regulated learners have an intrinsic desire to attain a particular

goal or perform a specific task (Zimmerman, 1995; Zimmerman & Risemberg, 1997).

2. Goal setting. Self-regulated learners know where they want to go and how they want

to get there (Winne, 1995; Zimmerman & Bandura, 1994).

3. Planning. Self-regulated learners plan their time and resources to attain a specific

goal or perform a task (Zimmerman & Risemberg, 1997).

4. Attention control. Self-regulated learners work to maximize their attention directed

toward a goal or task (Winne, 1995).

5. Application o f learning strategies. Self-regulated learners adjust learning strategies

according to situation (Winne, 1995).

6. Self-monitoring. Self-regulated learners are capable of monitoring their own progress

and adjusting learning strategies as needed to attain the goal or accomplish the task

(Butler & Winne, 1995; Winne, 1995; Zimmerman & Risemberg, 1997).

7. Self-evaluation. Self-regulated learners can determine when they’ve accomplished the

goal or completed the task (Schraw & Moshman, 1995; Zimmerman & Risemberg,

1997).

Students who are highly self-regulated establish high academic goals and achieve at a

higher level (Schraw, 1998). In reality, relatively few students function at a high level of

self-regulation, possibly due to teaching and learning paradigms imposed by traditional

instructional practice (Zimmerman & Bandura, 1994). If this is the case, alternative

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

learning environments like the virtual classroom might unleash higher levels of currently

constrained self-regulatory skills in students, which, in turn, could potentially lead to

higher academic achievement.

State Self-Regulation. Although it is clear that worked examples can improve learning

in a traditional setting, it is not yet known how such examples might affect learning in a

Web-based environment. If media’s effect on learning might be inconsequential, then

student dependence on worked examples in a Web-based environment might be

attributed more to individual learning characteristics, such as self-regulation. A clearer

understanding of this dependence can lead to better understanding of the constructs

needed for good, scientifically-based, instructional design.

Hong (1998) distinguishes two different classes of personality or psychological

attributes that can be applied to self-regulation - trait and state constructs. State self­

regulation is conceptualized as a transitory state that varies depending on situational

cognitive demands. For example, trait self-regulation is a performance attribute that

remains relatively stable across varying cognitive demands (Hong, 2001a). While the

study of both attributes is important for determining individual differences in learning

and performance, the present study seeks to build upon prior research to describe how

state self-regulation might effect various performance measures including the use of

worked examples.

Presently, no studies exist that investigate the relationship between self-regulatory

skills and hypermedia environments (Hartley & Bendixen, 2000). Zeidner, Boekarts, &

Pintrich (2000) offers directions and challenges for future research in this area:

1. Exploring interactions between environment and self-regulation.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. The acquisition and transmission of self-regulatory skills.

3. Training and promotion of self-regulatory skills.

4. Examining developmental differences in self-regulatory skills.

5. Examining individual differences in self-regulatory skills.

These challenges raise some important questions that can only be answered through

further research. Success or achievement in new learning environments at this point is

best summarized by Hartley and Bendixen (2001), “While we may have succeeded in

improving access to all, we have only succeeded in increasing access to learning for a

few.” (p. 24). In other words, Web learning has not yet been beneficial to the masses.

Since it is anticipated that self-regulation will play an important role in predicting

student success in online courses, a review of self-regulation research might yield insight

into student self-regulatory ability and how students might solve programming problems

online.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3

DEVELOPMENT OF CS ONLINE

The purpose of the current study was to develop a Web-based learning system as a

teaching and learning tool for introductory computer science concepts, and then perform

preliminary validation of the system’s efficacy as an instructional environment.

Approval was granted on February 20,2003, by the Social Behavioral Sciences

Institutional Review Board of the University of Nevada, Las Vegas before conducting the

research. The chapter describes key design attributes of CS Online resulting from

rationale and fundamental strategies described in Chapter 2. The attributes are presented

within the context of environmental, pedagogical, methodological, technical, and

structural design strategies. Environmental strategies are those that might address factors

outside of teacher control including lack of standards for a high school curriculum and

teacher certification, professional development issues, increasing growth of technical

education, declining enrollments in computer science courses, increasing complexity of

programming languages, accessibility to resources, and cost factors. Pedagogical

strategies involve classroom and course management, scope and sequence of content, and

instructional design. Methodological strategies involve the methods of teaching computer

programming. Technical strategies address the choice of platform, development

environment, language, and appropriate instruction and use of debugging tools.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Structural strategies are those associated with the artistic side of programming and

software design.

Environmental Design Strategies and CS Online Attributes

The environmental challenges facing computer science education include the lack of

standards for a high school curriculum and teacher certification, professional

development issues, increasing growth of technical education and declining enrollments

in computer science courses, increasing complexity of programming languages,

accessibility to resources, and cost factors. While individual teachers or any one system

may not possess the power to effect change in many of these areas, features inherent in

CS Online can help empower teachers to overcome others. In this section, a review of

those challenges most affected by CS Online design attributes is presented.

Teacher Professional Development and CS Online Design Attributes

As computer science emerged as a field of study in secondary schools, many teachers

ended up teaching the subject because they were either the most knowledgeable in

computers or were the first to indicate an interest. CS Online was designed to reach the

many teachers who lack either content knowledge or adequate resources to effectively

teach computer science. This was done by allowing teachers to function in the system

both as a teacher and a student. In other words, teacher status in the system implies that in

addition to managing their students, teachers can progress through content as if they were

students themselves. Teachers can, therefore, use the system to learn content ahead of or

alongside their students. This inherent professional development component of CS

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Online can be particularly helpful for those teachers who lack extensive formal training

in computer science.

Cost, Accessibility and CS Online Attributes

While national efforts to help prepare students for the AP exam are noteworthy, CS

Online was designed to reach the masses, the tens of thousands of students who might

never see an AP computer science course or exam, but who can benefit cognitively from

learning programming. In addition, because CS Online is Web-based, the complete

learning environment is accessible from anywhere that teachers and students have

Internet access. The model requires no expensive software development tools or

accompanying textbooks; everything is self-contained. The system was made (and

continues to be made) available at no cost to all 285,000 students in the Clark County

School District.

A Bridge to Technology Education

The aversion to computer science being incorporated into a broader technology

education program is understandable considering the academic nature of computer

science and the varying levels of inexperience technology teachers bring to the subject

(Deek & Kimmel, 1999). But this trend is more likely to continue before it’s reversed

(Levesque & Hudson, 2003), and computer science teachers might, in the meanwhile,

better serve education by adapting to rather than resisting programmatic changes. CS

Online promotes a spirit of cooperation mainly because of JavaScript’s natural affinity to

web pages. Problem solving activities in CS Online translate directly into web pages and

require knowledge of HTML for output formatting, web forms, and dynamically

controlled page content. In other words, the side effects of CS Online are consistent with

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the instructional goals of technology education programs to teach HTML and web design.

In fact, Chapter-10 covers visual interface design using an advanced Web development

tool, and Chapter-12 shows students how to publish their programs (pages) on the Web.

In summary, CS Online can be used as a means to promote further study in technology

education courses like HTML and web page design, and vice versa.

Pedagogical Design Strategies and CS Online Attributes

CS Online was designed to address several pedagogical challenges to computer

science education. A discussion o f its approach to classroom and course management,

scope and sequence of content, and instructional design issues follows.

Classroom and Course Management

Since the management of CS Online is Web-based, teachers can view and run

submitted source code from any computer that has Internet access and a browser,

including their own at home. The convenience of this attribute cannot be overstated. Not

only can teachers view and run the final code submitted for grading from home, but they

can also view every attempt students make to debug and run every program. This history

of problem solving opens a new window into student thinking and problem solving not

found in the review of computer science education literature. From this data, teachers can

identify patterns of common mistakes students make while trying to solve programming

problems, giving them opportunity to improve instruction. Finally, the management

component of CS Online allows teachers to provide students with immediate feedback on

programming progress and reset completed problems for them to complete additional

work on erroneous problems.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Content Scope and Sequence

CS Online intends to provide students with real problem solving experiences using

algorithmic and logical thinking, and students write programs toward this goal. CS

Online presents the most important language structures controls in a way that makes

learning fun and easy for students.

Summary o f CS Online Content Scope and Sequence

The course is divided into chapters and sections to keep content in small and concise

chunks. Beginning with an introduction, input/output (I/O) and variables, students

become familiar with the programming environment and ways to put information into

and get information back from their programs. Unconditional looping is also introduced

early to control I/O for array variables. Chapter-3 follows with an introduction to objects,

and how to reference and use various object properties and methods in programs. CS

Online emphasizes object orientation because it not only produces superior attitudes and

learning effects in programming (Reed and Liu, 1992), but also offers the best way to

write computer programs (Coad & Yourdon, 1993; Savitch, 2003). In Chapter-4, students

construct their own objects and use them in programs, and Chapter-5 shows students how

to connect visual interface components and objects. Visual interface components include

images, buttons, text fields, drop-down lists, radio buttons, and checkboxes - components

of standard Web forms.

By the end of Chapter-5, students have been engaged with building projects that were

then expanded in subsequent chapters as new material is presented. Chapters 6 and 7

follow with decision structures, conditional iteration and expanded project functionalities.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Examples of projects include a calculator, dice roller, and a CD player simulator. The

instructional benefits projects of this type can offer include opportunities to teach difficult

concepts. The dice roller, for example, is used to teach compound conditions and i f

statements by making the program recognize suits. Suit recognition is useful in popular

games like Yahtzee, Kizmet, and draw poker. Enrichment activities are provided for the

more motivated to extend the basic requirements into more sophisticated solutions. The

CD player simulator is a project used to teach conditional iteration through variations of

random track playback sequences. Advanced topics of introductory computer science

then follow in Chapters 8 and 9 with searching, sorting, and other algorithms; the

application of multi-dimensioned arrays; and recursion. In Chapter-10, students learn to

create their own visual interfaces using an advanced Web development tool like

Macromedia Dreamweaver MX to create Web forms. By the end of Chapter-10, students

are prepared to spend considerable time designing and building their own projects from

scratch. CS Online provides a library of project ideas with source code and visual

interfaces that students can view, run, and modify to reinforce concepts provided

throughout the course and to generate ideas. Examples include a hi-lo game, a stopwatch,

bingo, a scrambled word game, and other real-world projects.

Because students write programs in JavaScript (details about choice of language are

provided in the Technical Attributes section), completed projects are Web pages that are

easily published and showcased via the school Web site or anywhere else on the Web.

The ability to showcase student work through the Web builds motivation and pride

(DuPont, 1998). Chapter-12 provides students with instructions on how to publish their

programs (pages) on the Web, and how their pages compare to Web pages in general.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The chapter also functions as a segue into study of hypertext markup language (HTML)

and advanced Web design. See Table 3-1 for a summary of the scope and sequence of CS

Online.

Functional Progression o f Chapter and Section Content

Each chapter begins with an explanation of concepts with hyperlinks to

supplementary Web sites in support of the concepts. Chapters are sub-divided into

sections to keep Web pages small and concise (Lynch & Horton, 1999). The curriculum

provides random access links to chapters and sections so that students could, at any time,

reference content and previously solved exercises. Embedded in each section are in-text

worked examples for students to read, trace, and run as often as needed. Students can also

modify and re-run any example at any time. At the end of each section is a list of

exercises for students to practice programming concepts. Embedded in each exercise are

optional in-exercise worked examples for students to apply toward their own solutions.

Appendix-A contains samples of chapter, section, and example content.

Worked examples are provided to illustrate concepts introduced in each section. The

output of worked examples is viewed by clicking the link to the example. The example

opens and runs in a new window. Students can then trace the program and the output to

see how the solution worked, and source code could be copied and pasted into the

exercise edit window.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 3-1

Scope and Sequence of CS Online

Chapter and Title________________________General Content

Chapter-1: Introduction

Chapter-2: I/O and Variables

Chapter-3: Objects

Chapter-4: User-Defined Objects

Chapter-5: The Visual Interface

Chapter-6: Making Decisions

Chapter-7: Conditional Iteration

Chapter-8: Advanced Topics

Chapter-9: Algorithms

Chapter-10: Web Forms and Custom Interfaces

Chapter-11: Projects

Chapter-12: JavaScript, HTML, and Web Pages

Introduction to the course, how to use the system,

debugging tools.

Input and output, variable naming convention,

unconditional iteration using/or loops.

JavaScript objects including referencing object

properties and methods.

Constructing objects in JavaScript.

Using a visual interface with objects.

Decisions using if and switch, conditions.

Control using while loops and conditions.

Multi-dimensioned arrays, recursion, and advanced

parameter passing.

Introduction to program efficiency, searching,

sorting, and other popular algorithms.

Constructing a visual interface using a web design

tool to create web forms.

Analysis of projects in the project library, design of

a student project.

The relationship between JavaScript and web pages.

Dynamic web page design and HTML (DHTML)

using JavaScript.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Exercise Sets

Section-end exercises are designed to reinforce chapter and section content and to

provide students with opportunity to practice. After clicking on the link to a problem,

students are presented with an option to view a related in-text worked example or three

levels of in-exercise worked examples. The in-text worked example can be viewed as an

example-problem pair (Trafton & Reiser, 1993), and in-exercise worked examples can be

viewed as incomplete examples (Stark, 1999). For each example-problem pair, students

can: (a) run the worked example and observe its behavior, (b) modify the worked

example source code and run the modified program, or (c) copy, paste, and make

modifications to the worked example code as their own solution.

Running exercise solutions works much in the same way as worked examples. The

students have complete autonomy in the management of source code for section-end

exercises. Whenever a student attempts to run a program, CS Online saves a copy of their

source code in the back-end database. In fact, copies of source code for every attempt are

captured for all students, chapters, and exercises. If a student wishes to revisit a submitted

problem, the most currently submitted source code is presented back upon entering the

exercise. The student can inform the instructor that a problem is ready for grading by

clicking the ‘Ready for Grading’ checkbox before submitting.

If a student is having trouble solving a problem, an incomplete worked example can

be displayed to assist with the programming process. Three levels o f incomplete worked

examples are available for each problem and generally progress as follows: (a) pseudo­

code for level-1, (b) partial solution of pseudo-code for level-2, and (c) partial solution of

source code for level-3. Pseudo-code is defined as:

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

An outline of a program, written in a form that can easily be converted into real

programming statements. For example, the pseudocode for a bubble sort routine

might be written:

while not at end of list

compare adjacent elements

if second is greater than first

switch the two elements

get the next two elements

if elements were switched

repeat for the entire list

Pseudo-code cannot be compiled nor executed, and there are no real formatting or

syntax rules. It is simply one important step in producing the final code. The

benefit of pseudo-code is that it enables the programmer to concentrate on the

algorithms without worrying about all the syntactic details of a particular

programming language. In fact, you can write pseudocode without even knowing

what programming language you will use for the final implementation

(Webopedia, 2003, p. 1).

If an incomplete worked example link is clicked, the source code is displayed in the

exercise text box, and problem solution can progress in the same way as before - the

student can make modifications and test the program. Whenever an incomplete worked

example level is used, a penalty can be applied toward the total points earned for that

exercise. For CS Online, a one-half point penalty was applied for each hint level used,

resulting in a 1.5 point total penalty for using all three hints. The penalty can serve as an

incentive for students to work harder, or conversely, as a disincentive to give up too

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

easily. Appendix-B contains an example of hint levels one, two, and three and the

problem solution.

Methodological Design Strategies and CS Online Attributes

The CS Online learning experience is built upon the PBL instructional paradigm

where students acquire useful knowledge that transfers into real-world contexts

(Wilkerson & Gijselaers, 1996). The Reading approach to teaching programming also

lies at the core of the system, where students run pre-written programs in the form of

worked examples, modify and amplify those examples, and then generate programs on

their own (Van Merrienboer and Krammer, 1987). An instructional goal of CS Online is

as much language independence as possible, focusing more on problem solving with

application to real-world contexts. This is achieved by emphasizing constructs that are

common to most popular languages like Java and C++. In general, object-oriented

programming concepts are introduced early and continue throughout the course, mainly

since object-oriented programming has been shown to be a more effective instructional

approach (Liu, 1998; Reed & Liu, 1992).

Worked Examples

CS Online engaged two types of worked examples: in-text and in-exercise. In-text

examples were embedded in chapter sections, and in-exercise examples were coupled

with section-end exercises. There were at least two in-text examples per section that the

students could view, run, or modify and run at any time, since multiple examples in

section content have been shown to facilitate improved learning over the use of a single

example (Reed & Bolstad, 1991). In-exercise examples were available to assist with

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

problem solutions and were presented in two general forms: (a) example-problem pairs,

where the problem was associated with the in-text worked example that was most closely

resembled the exercise, and (b) incomplete examples, also referred to as hints or partial

solutions, which were available at three levels. Example-problem pairs have been shown

to enhance skill acquisition in a most effective manner (Trafton & Reiser, 1993). Stark

(1999) found that, compared to studying complete examples, incomplete examples are

beneficial to produce higher levels of effective self-explanation. The use of in-text and in­

exercise worked examples in CS Online was completely optional for the pilot study.

Technical Design Strategies and CS Online Attributes

Choice o f Development Environment

Since CS Online is Web-based, choice of platform was not an issue. CS Online could

be run from any hardware platform and operating system that supports a Web browser.

Internet Explorer is the recommended browser because of its ability to integrate the

Microsoft Script Debugger, which is a free download that automatically launches when a

JavaScript error is encountered (Microsoft, 2003). Students can either write programs

within CS Online text fields, or use any other text editor or word processor, then copy

and paste their programs into the system. This development suite of an editor, debugger,

and run-time environment benefits schools and students in that there are no additional

software costs, and programs can be written from home or any computer with Internet

access.

Choice o f Language

The choice of JavaScript as the programming language was not difficult because of

the many benefits realized by its use. First of all, JavaScript is easy to apply and

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

possesses all the necessary attributes for teaching introductory computer programming

concepts. It should be clarified that JavaScript and Java are not the same language.

JavaScript was designed to resemble Java, and therefore, also looks a lot like C and C++.

The main difference is that Java was built as a general-purpose object language, while

JavaScript is intended to provide a quicker and simpler language for enhancing Web

pages and servers (Google, 2003). Because of its resemblance to the other major

languages, learned concepts can be easily transferred to more advanced study of

computer science. In addition, JavaScript’s natural affinity to Web pages made it easy for

students to showcase their work, and promotes a Web-centric educational focus on

HTML, Web page design, Flash, and other Internet technologies.

The biggest criticism CS Online might receive as an effective instructional

environment is the choice of JavaScript as the language for teaching introductory

computer science. Choice of language is one of the most important decisions educators

make in planning introductory courses and inherent concepts (Stevenson & West, 1998).

A critical comparison of JavaScript and Java reveals that although the two languages are

concurrently similar and fundamentally different, the differences may not be dramatic

enough to dismiss the simpler of the two languages as a viable alternative. First of all,

computer science education leaders are already searching for a much simpler form of

Java for introductory courses (Roberts, 2003). Second, because JavaScript “descends in

spirit from a line of smaller, dynamically typed languages... [they] offer programming

tools to a much wider audience because of their easier syntax, specialized built-in

functionality, and minimal requirements for object creation” (Netscape, 2000). Third, the

majority of JavaScript constructs used in CS Online are upward compatible with Java.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

With the exception of objects and loose typing differences, language structures including

literals, block, and scope; data types including strings and arrays; expressions and

operators including relational, unary, assignment, and string concatenation; and control

structures including if-else, switch, and while are virtually identical in appearance and

use to Java. Because the study focuses on problem solving, programming language is

viewed as a matter of secondary importance, with emphasis placed on the problem to be

solved and the logical steps required for its solution (Milbrandt, 1995). This approach

does not intend to underplay the importance of the AP exam or preparation on its behalf,

but rather to promote a way of building motivational courses to attract and teach large

numbers of students. Those interested in pursuing higher study can then transfer the

majority of their introductory knowledge to Java.

Structural Design Strategies and CS Online Attributes

CS Online emphasizes the concepts of structured, object-oriented program design

from the very beginning. These concepts include the use of self-documenting code

through choice of variable names, naming convention, appropriate use of comments, use

of objects and how those objects interface with one another and the outside world.

Concepts attained through CS Online are transferable to other programming languages

and more advanced study of computer science.

In summary, CS Online can address many of present needs of computer science

education. Advances in technology have made it possible to conceptualize and implement

new models that simplify instructional processes while providing access to more students

through the Internet. In addition, a research-based framework for the various pedagogical

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and system attributes might increase the likelihood of effective teaching and learning

experiences.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4

PRELIMINARY VALIDATION EFFORT

The purpose of the study was to develop a Web-based learning system as a teaching

and learning tool for introductory computer science concepts, and then perform

preliminary validation of the system’s efficacy as an instructional environment.

Approval was granted on February 20, 2003, by the Social Behavioral Sciences

Institutional Review Board of the University of Nevada, Las Vegas before conducting the

research. The chapter begins with the participants in the study and then follows with the

instructional materials used, a table of raw and calculated measures, and the procedures

employed. The chapter closes with a summary of the research questions, data sources,

and analytical methods applied.

Participants

The participants were 36 students from several high schools in Southern Nevada, and

12 graduate students from the University of Nevada, Las Vegas (UNLV). The high

school students’ participation in the CS Online system was the main focus of the study,

while the graduate students were available to evaluate and grade student work. Of the 36

high school students, 13 were female, 23 were male, and the ethnic distribution was 80%

Caucasian, 11% Hispanic, and 9% Asian American with ages ranging from 13 to 18 years

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

old. The high school students enrolled in CS Online as an academic elective for the

spring semester of 2002. Programming is offered as an elective course in the state of

Nevada, and credit earned can be applied to fulfill a graduation requirement.

The UNLV graduate students were enrolled in ICG 758, the Methods of Teaching

programming course, and worked through CS Online content along with the 36 high

school students. Their involvement with CS Online was threefold: (a) to observe a

functional implementation of the Reading approach (method) of teaching programming,

(b) to directly interface with high school students engaged in learning computer

programming, and (c) to evaluate submitted source code. The graduate students’

interactions with the high school students were limited to answering questions and

evaluating submitted work. Several UNLV graduate students were computer science

teachers in CCSD who volunteered their high school students for participation in the

study.

Instructional Materials

The coursework consisted of various questionnaires as described in detail in the

instruments section below, 25 sections of pedagogical content including worked

examples and exercises, and an exam. All worked examples, exercises, and exams

required high-level thinking processes. Questionnaires and the exam included multiple-

choice items, and exercises required written program solutions. There were a total of 45

possible exercises to complete.

Instructional materials consisted of chapter and section content covering introductory

concepts of programming using the JavaScript programming language, in-text worked

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

examples embedded in section content, and chapter-end exercise sets with optional in­

exercise worked examples that were optionally available. A summary of the scope and

sequence of CS Online content was presented in Table 3-1.

Measures

Sixty-six measures were generated for the pilot study, 38 of which were raw data

collected by the system, and 28 of which were calculated based on raw data values. CS

Online was the primary data collection instrument, which generated data as students

interacted with the various components of course content. Table 4-1 shows the

comprehensive list of raw (R) and calculated (C) data values (or variables) described in

this chapter. Variables were assigned numbers and labels for ease of reference in

subsequent sections and chapters of the present study. Type describes whether the

variable was derived from raw or calculated data, and Freq describes the frequency of

data collection. Frequency options include: 1, a one-time collection of the data as in a

questionnaire; Ready, produced when a student clicked the ‘Ready for Grading’ checkbox

before running; Run, when the Run button was clicked; Hint, when a hint was clicked;

and Click, when an example link or button was clicked. Data for raw variables were taken

directly from database tables generated by the system. Calculated variables were created

based on mathematical manipulation of raw data variables. Raw data descriptions are

provided first followed by detailed descriptions of each calculated variable.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-1

Summary of Raw and Calculated Variables

Num Variable Description Label Type Freq

1 Math Experience MathScore C

2 Computer Experience CompScore C

3 Trait Self-Regulation N/A R

4 Trait Self-Regulation w/Programming N/A R

State Self-Regulation (4 separate questionnaires) C

5 - Section 2.7 end: planning sub-component Planning C

6 - Section 2.7 end: self-check SelfChk c

7 - Section 2.7 end: effort Effort c

8 - Section 2.7 end: self-efficacy SelfEff c

9 - Exam end: planning sub-component Planning c

10 - Exam end: self-checking SelfChk c

11 - Exam end: effort Effort c

12 - Exam end: self-efficacy SelfEff c

13 - Section 3.7 end: planning sub-component Planning c

14 - Section 3.7 end: self-checking SelfChk c

15 - Section 3.7 end: effort y Effort c

16 - Section 3.7 end: self-efficacy SelfEff c

17 - Section 4.4 end: planning sub-component Planning c

18 - Section 4.4 end: self-checking SelfChk c

19 - Section 4.4 end: effort Effort c

20 - Section 4.4 end: self-efficacy SelfEff c

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-1 (Continued)

Num Variable Description Label Type Freq

The following measures are from exercises solved:

21 Total # of problems solved TotSolved

22 % of total # of problems solved PctSolved

23 Total average score for solved problems TotAvgSc

24 # of optional problems solved OptSolved

25 Average score for optional problems OptAvgSc

26 # of easy exercises solved ESolved

27 Average score for easy exercises solved EAvgSC

28 # of medium exercises solved MSolved

29 Average score for medium exercises solved MAvgSC

30 # of hard exercises solved HSolved

31 Average score for hard exercises solved HAvgSC

R

C

C

R

C

R

C

R

C

R

C

Ready

Ready

Ready

Ready

Ready

The following measures are from Submitted Attempts:

32 Total # of submitted attempts TotAtts

33 Total # of exercises solved TotSolved

34 Average # of submitted attempts TotAvgAtt

35 # o f submitted attempts for optional exercises OptAtts

36 # of optional exercises solved OptSolved

37 Average # of attempts for optional exercises OptAvgAtt

38 # of submitted attempts for easy exercises EAttempts

39 # of easy exercises solved ESolved

40 Average # of attempts for easy exercises EAvgAttempts

R

R

C

R

R

C

R

R

C

Run

Ready

Run

Ready

Run

Ready

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-1 (Continued)

Num Variable Description Label Type Freq

41 # of submitted attempts for medium exercises MAttempts R Run

42 # of medium exercises solved MSolved R Ready

43 Average # of attempts for medium exercises MAvgAttempts c

44 # of submitted attempts for medium exercises HAttempts R Run

45 # of medium exercises solved HSolved R

46 Average # of attempts for hard exercises

The following measures are from in-text examples:

HAvgAttempts C Ready

47 Total number of unique in-text examples visited TotUniqlnTxt R Click

48 Percent of in-text examples visited PctUniqlnTxt C

49 Total visits to in-text examples TotlnTxt R Click

50 Average # of visits to unique in-text examples

The following measures are from in-exercise examples:

AvgPerUniqlnTxt C

51 Total number of unique in-exercise examples TotUniqlnEx R Click

52 Percent of in-exercise examples visited PctUniqlnEx C

53 Total visits to in-exercise examples TotlnEx R Click

54 Average # of visits to in-exercise examples

The following measures are from hints:

AvgPerUniqlnEx C

55 Sum of hint levels used in all problems HintSum C

56 # of problems where hints were used HintProbs R Hint

57 Average hint level where hints were used

63

AvgHintLev C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-1 (Continued)

Num Variable Description Label Type Freq

58 Sum of hint levels used in optional problems OptHintSum c

59 # of optional problems where hints were used OptProbs R Hint

60 Average hint level in opt problems where used AvgOptHintLev C

61 # of easy problems where hints were used EHintProbs R Hint

62 Sum of hint levels in easy problems EHintSum C

63 Average hint level in easy problems where used EAvgHintLev c

64 # of medium problems where hints were used MHintProbs R Hint

65 Sum of hint levels in medium problems MHintSum C

66 Average hint level in medium problems where used MAvgHintLev c

67 # of hard problems where hints were used HHintProbs R Hint

68 Sum of hint levels in hard problems HHintSum C

69 Average hint level in hard problems where used

The following measures are from the exam:

HAvgHintLev c

70 Exam score ExamScore c

71 Exam percentage ExamPct c

Raw Variables

For each raw and calculated variable described in this and the next section, reference

is made to the variables listed in Table 4-1 using the following syntax: Variable

Mnemonic (Number). For example, TotSolved(21) refers to variable 21 in Table 4-1, the

total number of problems solved. All raw variables were derived from table queries

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

applied to raw data generated by the system. More specifically, the Web-based data table

was converted to a Microsoft Access table. Queries were then designed to extract data

into workable data sets. These data sets were then transferred to Excel spreadsheets from

which calculated variables were derived.

TotSolved(21). The total number of exercises (including optional) that were checked

‘Ready for Grading’ by the student.

OptSolved(24). The number of optional-only exercises that were checked ‘Ready for

Grading’ by the student.

ESolved(26). The number of easy exercises that were checked ‘Ready for Grading’ by

the student. Easy, medium, and hard level exercises were selected from within the first 20

of 45 exercises to ensure the highest rate of student completion. The five easy exercises

were 2-1-1, 2-1-2, 2-1-3, 2-2-1, and 2-2-2. The five medium exercises were 2-3-1, 2-3-3,

2-4-1,2-4-3, and 2-5-1. The five hard exercises were 2-3-2, 2-4-2,2-6-1,2-7-1, and 3-2-

1. Exercises are identified by C-S-E notation, with C equal to chapter number, S equal to

section number, and E equal to exercise number. To qualify as an easy, medium, or hard

exercise, the anticipated average number of submitted attempts (calculated variable 34 of

Table 3-2) was used for classification. A TotAvgAtt value of 1-5 qualified the exercise as

easy. Values ranging from 6-10 were classified medium, and the 11-20 range was

classified as hard.

Msolved(28). The number of medium exercises that were checked ‘Ready for

Grading’ by the student. Refer to ESolved above for an explanation of criteria applied for

classifying an exercise as easy, medium, or hard.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hsolved(30). The number of hard exercises that were checked ‘Ready for Grading’ by

the student. Refer to ESolved above for an explanation of criteria applied for classifying

an exercise as easy, medium, or hard.

TotAttempts(32). The total number of attempts (runs) submitted for all exercises

(including optional).

OptAtts(35). The total number of attempts submitted for all optional exercises.

EAttempts(38). The number of attempts submitted for easy problems.

Mattempts(41). The number of attempts submitted for medium problems.

HAttempts(41). The total number of submitted attempts for hard problems solved.

Tot Uniqln Txt(47). The number of unique in-text examples visited, regardless of the

number of times for each. Each section provided worked examples presented as example-

problem pairs.

TotInTxt(49). The total number of visits to in-text examples, including multiple visits

to the same example.

TotUniqInEx(51). The number of unique in-exercise examples visited, regardless of

the number of times for each.

TotInEx(43). The total number of visits to in-exercise examples, including multiple

visits to the same example.

HintProbs(56). The total number of problems where at least hint level-1 was used.

Hints were available for each problem at three levels, and the system recorded the levels

at which they were requested.

OptProbs(59). The total number of optional problems where at least hint level-1 was

used.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

EhintProbs(61). The total number of easy problems where at least hint level-1 was

used.

MhintProbs(64). The total number of medium problems where at least hint level-1

was used.

HhintProbs(67). The total number of hard problems where at least hint level-1 was

used.

Calculated Variables

MathScore(l). Measure of math experience. To measure prior knowledge and

achievement in mathematics, the Math Knowledge questionnaire was developed and used

(Hong, 2003). The questionnaire can be found in Appendix-C. The questionnaire

measured the number of math courses taken from 9 possible courses. Each positive

response (Yes) yielded one point. The grade earned for each ‘Yes’ response yielded

scores of 4 for A, 3 for B, 2 for C, 1 for D or below, and 0 for no experience in the

course. The MathScore measure was calculated by the sum of positive responses

(possible of 9) and the average grade (possible of 4) for courses completed. The range of

values for the continuous version of this measure was 0 to 13 which were divided into

four categories of poor, low, good, and high for values less than 5, 5-7.4,7.5-9.9, and 10

and above, with low group scores ranging from 0 to 7.4 (poor to low), and high group

scores ranging from 7.5 to 13 (good to high).

CompScore(2). Measure of computer experience. To measure prior knowledge and

achievement in the use of computers and programming, the Computer Experience

questionnaire was developed and used (Hong & Halopoff, 2003). The questionnaire can

be found in Appendix-C. The questionnaire measured student experience in 13 areas of

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

computer use ranging from literacy to HTML and programming in various languages.

The CompScore measure was calculated by the sum of positive responses. The range of

values for the continuous version was 0 to 13, and these values were divided into four

categories of poor, low, good, and high for values less than 5, 5-7.4, 7.5-9.9, and 10 and

above, with low group scores ranging from 0 to 7.4 (poor to low), and high group scores

ranging from 7.5 to 13 (good to high).

Self-regulation(5-20). Self-regulation measures were taken following the end of

section 2-7 and the exam. The measures taken following sections 3-7 and 4-4 were

completed by fewer students since not all students made it that far in the course. The

questionnaire can be found in Appendix-C.

Planning(5, 9, 13, and 17). Derived by averaging the scores of items 1, 8, 15, 22, 29,

and 33 of a 36-item questionnaire. Scores for each item ranged in value from 1 to 4,

where 1 represented a response of “Not at all”, 2 represented a response of “Somewhat”,

3 represented a response of “Moderately so”, and 4 represented a response of “Very

much so.”

Self-checking(6, 10, 14, and 18). Derived by averaging the scores of items 2, 9, 16,

23, 30, and 34 of the same Self-Regulation questionnaire. Scores for each item were

determined in the same manner as the planning sub-component.

Effort(7, 11, 15, and 19). Derived by averaging the scores of items 3,10, 17, 24, 31,

and 35 of the same Self-Regulation questionnaire. Scores for each item were determined

in the same manner as the planning sub-component.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-efficacy(8, 12, 16, and 20). Derived by averaging the scores of items 4, 11, 18,

25, 32, and 36 of the same Self-Regulation questionnaire. Scores for each item were

determined in the same manner as the planning sub-component.

PctSolved(22). Percent of total number of problems solved. The total number of

problems completed by a student divided by 45 - the total number of problems available.

TotAvgSc(23). The average score earned for problems solved - the sum of earned

points divided by the number of problems completed by a student. Each exercise was

worth a maximum of 10 points with a penalty of 0.5 points applied for each hint level

used. Students earned a minimum of 5 points for each exercise where reasonable effort

was given. Point values were assigned by teaching assistants who reviewed the problems

and assigned scores.

OptAvgSc(25). The average score earned for optional exercises solved - the sum of

earned points divided by the number of optional problems completed by a student. The

following exercises were defined as optional: 3-2-3, 3-4-2, 3-7-3, and 4-5-2. Each

optional exercise was worth a maximum of 10 points with a penalty of 0.5 points applied

for each hint level used. Students earned a minimum of 5 points for each exercise where

reasonable effort was given.

EAvgSC(27). The average score earned for easy problems solved - the sum of earned

points divided by the number of exercises completed by a student. 5 exercises were

selected to measure student performance at the easy level.

MAvgSC(29). The average score earned for medium problems solved - the sum of

earned points divided by the number of exercises completed by a student. 5 exercises

were selected to measure student performance at the medium level.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

HAvgSC(31). The average score earned for hard problems solved - the sum of earned

points divided by the number of exercises completed by a student. 5 exercises were

selected to measure student performance at the hard level.

TotAvgAtt(34). Average number of submitted attempts, calculated by the sum of the

number of attempts divided by the number of completed exercises. The number of

attempts per completed exercise is determined by the count of attempts before the student

checked the exercise as ready for grading. Ready for grading status prevented students

from any further modifications, and hence, additional submitted attempts.

OptAvgAtt(37). Average number of attempts for optional exercises, calculated by the

sum of the number of attempts divided by the number of completed optional exercises.

The same ready-for-grading status applied to optional exercises.

EavgAttempts(40). Average number of submitted attempts for easy level exercises,

calculated by the sum of the number of attempts divided by the number of completed

exercises in the easy range. The same ready-for-grading status applied to easy exercises.

MAvgAttempts(43). Average number of submitted attempts for medium level

exercises, calculated by the sum of the number of attempts divided by the number of

completed exercises in the medium range. The same ready-for-grading status applied to

medium exercises.

HavgAttempts(46). Average number of submitted attempts for hard level exercises,

calculated by the sum of the number of attempts divided by the number of completed

exercises in the hard range. The same ready-for-grading status applied to hard exercises.

PctUniqInTxt(64). Percent of unique in-text examples visited. 64 unique in-text

examples were available throughout the entire course content. In-text examples are

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

workable examples embedded within the section content. A click of an example

constituted a visit, and this measure is the number of in-text examples that were clicked at

least once divided by the total number, 64.

AvgPerUniqInTxt(50). Average number of visits to unique in-text examples,

calculated by the total number of visits (clicks) to in-text examples divided by the number

of unique in-text examples visited.

AvgPerUniqInEx(54). Average number of visits to unique in-exercise examples,

calculated by the total number of visits (clicks) to in-exercise examples divided by the

number of unique in-exercise examples visited. In-exercise examples were available for

students from within the exercise window.

HintSum(55). Total sum of hint levels used for all completed exercises. Hints were

optional, and a hint was counted whenever at least hint level-1 was used. There were

three hint levels available.

AvgHintLev(5 7). Average hint level used for each completed exercises, calculated by

HintSum divided by the number of exercises where hints were used.

OptHintSum(58). Total sum of hint levels used for all completed optional exercises.

Hints were optional, and a hint was counted whenever at least hint level-1 was used.

There were three hint levels available.

OptAvgHintLev(60). Average hint level used for each completed optional exercise,

calculated by OptHintSum divided by the number of optional exercises where hints were

used.

EHintSum(62). Sum of hint levels used in easy level exercises.

MhintSum(65). Sum of hint levels used in medium level exercises.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

HHintSum(68). Sum of hint levels used in hard level exercises.

EavgHintLev(63). Average hint level used in easy range exercises, calculated by

EHintSum divided by the number of easy level exercises where hints were used.

MAvgHintLev(66). Average hint level used in medium range exercises, calculated by

MHintSum divided by the number of medium range exercises where hints were used.

HavgHintLev(69). Average hint level used in hard range exercises, calculated by

HHintSum divided by the number of hard range exercises where hints were used.

ExamScore(70). Total possible points earned for the exam. The exam was comprised

of 12 programming exercises worth 5 points each. A total of 60 points were possible for

this measure.

ExamPct(71). Percent of total possible points for the exam.

Source code history. For each submitted solution attempt, a copy of the source code

was stored in the back-end database.

Data Sources

Questionnaires

Three questionnaires presented automatically to the students were required to be

completed before students were permitted to proceed with section content. These

included the math experience, computer experience, and self-regulation questionnaires

that were administered according to the schedule shown in Table 4-2. See Appendix C

for copies of each of these questionnaires.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-2

Schedule of Required Questionnaires

Questionnaire When Administered

Math Knowledge Beginning of the course

Computer Experience Beginning of the course

State self-regulation Following section 2.7

State self-regulation Following section 3.7

State self-regulation Following section 4.4

State self-regulation Following the midterm exam

System generated data

CS Online generated or collected data automatically as students progressed through

the course content. This data included all raw variables as shown in Table 4-1. Data were

converted from the server into a Microsoft Access database, and then compiled into

useful numbers through SQL queries.

Hand entered data

Exercise scores were hand entered into the system following student indication that

the exercise was ready for grading. In some rare instances, some students requested an

exercise to be reset so that it could be submitted again for re-grading, but the number of

reset requests was negligible.

Procedure

The general procedure students followed to participate in the course involved

accessing the Web site through a browser, registering for the course, awaiting an E-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mailed password upon approval, then logging in to the system. The detailed steps are as

follows:

1. Students registered for the CS Online course by accessing the Web URL

http://www.csonline.ccsd.net and clicking Student Registration.

2. Computer Science instructors at the schools provided the system administrator (the

present investigator) with a list of names expected to participate in the course.

3. The system administrator approved the registered students. Passwords were auto-

eMailed to the students to the address they provided in the registration form.

4. After logging in to the system for the first time, students were able to review

introductory information in chapter-1. Upon entering section-1 of chapter-2, students

were immediately presented with the math and computer experience questionnaires.

a. Students were required to complete all questions in the math experience

questionnaire before moving on to the computer questionnaire.

b. Students were required to complete all questions in the computer experience

questionnaire before moving on to section 2-1.

5. Students proceeded to work through content chapter-by-chapter and section-by-

section. Each section contained in-text worked examples and required exercises.

Some sections contained optional exercises.

a. Students were permitted to proceed to the next exercise only after submitting the

current exercise by clicking the ‘Ready for Grading’ checkbox and then the

Submit button.

b. Students were permitted to proceed to the next section only when all required

exercises in the current section were completed. This was done by clicking the

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.csonline.ccsd.net

www.manaraa.com

‘Ready for Grading’ checkbox and the Submit button following the last required

exercise.

6 . At the end of section 2-7, students were automatically presented with the Self-

Regulation questionnaire by the system.

a. Students were required to complete all questions in the questionnaire before they

could proceed to section 3-1.

7. Midway through the 10 week time period (approximately week 6), students were

presented with the exam.

a. Students were required to complete all exercises in the exam before being allowed

to continue with course content.

b. Students were also required to complete the self-regulation questionnaire

immediately following the exam before being allowed to proceed with more

content.

8. At the close of the 10-week period, databases were copied and prepared for analysis

through SQL queries and other calculations.

Summary of the Research Questions

Tables 4-3 through 4-7 provide a summary of the research questions, data sources,

and the analytic approaches to answering the questions. The applied analytical methods

were comparisons of mean frequencies and scores for each measure. Beginning with

Table 4-3, the data sources used were various measures including a self-regulation

questionnaire score and scores associated with the use of in-text worked examples, in-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

exercise worked examples, optional exercises, hints used, attempts required to complete

exercises, and exercise and exam performance.

Table 4-4 shows a summary of data and analytical methods applied to research

Quesiton-2. The data sources were various measures including a math experience

questionnaire score and scores associated with the use of in-text worked examples, in­

exercise worked examples, optional exercises, hints used, attempts required to complete

exercises, and exercise and exam performance.

Table 4-5 shows a summary of data and analytical methods applied to research

Quesiton-3. The data sources were various measures including a computer experience

questionnaire score and scores associated with the use of in-text worked examples, in­

exercise worked examples, optional exercises, hints used, attempts required to complete

exercises, and exercise and exam performance.

Table 4-6 shows a summary of data and analytical methods applied to research

Quesiton-4. The data sources were various measures including self-regulation

questionnaire scores and scores associated with the use of in-text worked examples, in­

exercise worked examples, optional exercises, hints used, attempts required to complete

exercises, and exercise performance for easy, medium, and hard-level exercises.

Table 4-7 shows a summary of data and analytical methods applied to research

Quesiton-5. The data sources used were observation of submitted source code for

selected exercises. The applied analytical method was a comparison of changes made by

students to source code between consecutive attempts to solve exercises.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-3

Data Sources and Analyses for Research Question-1

Question Data Sources Analysis

(1) How do (1A) Self-regulation questionnaire Describe the mean scores of each of 15

students with low given at the end of section 2-7. measures for high versus low self-regulation

and high self- (IB) A count of the number of groups using descriptive statistics. Low group

regulatory skills times all in-text worked examples self-regulation scores ranged from 0.0 to 2.5,

perform in the use are run for all exercises in chapters and High group scores ranged from 2.6 to 4.0.

of in-text worked 2, 3, 4, and 5. Self-regulation score ranges applied to four

examples, in­ (1C) The number of in-exercise sub-components of self-regulation including

exercise worked worked examples accessed for all planning, self-checking, effort, and self-

examples, hints, exercises in chapters 2, 3, 4, and 5. efficacy.

optional exercises, (ID) The number of optional Measures. Mean scores for each of the

and problem­ exercises completed for all following raw and calculated data:

solving scores? exercises in chapters 2, 3,4, and 5. (1-1) Planning and monitoring (meta-

(IE) The average hint level used cognitive activity)

for all exercises in all chapters 2, 3, (1-2) Self-efficacy and effort (motivation)

4, and 5. (1-3) AvgHintLevel(5 7)

(IF) The average number of (1-4) HintProbs (56)

attempts for each exercise in all (1-5) AvgPerUniqInEx(54)

chapters 2, 3, 4, and 5. (1-6) TotInEx(53)

(1G) The total score for all (1-7) TotUniqInEx(51)

exercises in chapters 2, 3,4, and 5. (1-8) AvgPerUniqInTxt(50)

(1-9) TotlnTxt (49)

(1-10) TotUniqInTxt(47)

(1-11) OptAvgAtt(37)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-3 (Continued)

Question Data Sources Analysis

(1-12) OptAvgSc(25)

(1-13) OptSolved(36)

(1-14) TotAvgAtt(34)

(1-15) TotAvgSc(23)

(1-16) TotSolved(21)

(1-17) ExamScore(70)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-4

Data Sources and Analyses for Research Question-2

Question Data Analysis

(2) How do (2A) Math experience Describe the mean scores of each of 15

students with low questionnaire given at the measures for high versus low math experience

and high math beginning of the course . groups using descriptive statistics. Low group

experience perform (2B) A count of the number of math scores ranged from 0.0 to 7.4, and High

in the use of in-text times all in-text worked group scores ranged from 7.5 to 13.0.

worked examples, examples are run for all Measures. Mean scores for each of the following

in-exercise worked chapters 2, 3, 4, and 5. raw and calculated data:

examples, hints, (2C) The number of in-exercise (2-1) Math experience score

optional exercises, worked examples accessed for (2-2) AvgHintLe vel(57)

and average all chapters 2, 3,4, and 5. (2-3) HintProbs (56)

number of attempts (2D) The number of optional (2-4) AvgPerUniqInEx(54)

to solve problems, exercises completed for all (2-5) TotInEx(53)

and problem­ chapters 2, 3, 4, and 5. (2-6) TotUniqInEx(51)

solving scores? (2E) The average hint level (2-7) AvgPerUniqInTxt(50)

used for all chapters 2, 3, 4, and (2-8) TotlnTxt (49)

5. (2-9) TotUniqlnTxt(47)

(2F) The average number of (2-10) OptAvgAtt(37)

attempts for each exercise for (2-11) OptAvgSc(25)

all chapters 2, 3,4, and 5. (2-12) OptSolved(36)

(2G) The total score for all (2-13) TotAvgAtt(34)

exercises in the last sections for (2-14) TotAvgSc(23)

all chapters 2, 3, 4, and 5. (2-15) TotSolved(21)

(2-16) ExamScore(70)

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-5

Data Sources and Analyses for Research Question-3

Question Data Analysis

(3) How do (3A) Computer experience Describe the mean scores of each of 15 measures

students with low questionnaire given at the for high versus low computer experience groups

and high computer beginning of the course. using descriptive statistics. Low group computer

experience perform (3B) A count of the number of scores ranged from 0.0 to 7.4, and High group

in the use of in-text times all in-text worked scores ranged from 7.5 to 13.0.

worked examples, examples are run for all Measures. Mean scores for each of the following

in-exercise worked chapters 2, 3, 4, and 5. raw and calculated data:

examples, hints, (3C) The number of in- (3-1) Computer experience

optional exercises, exercise worked examples (3-2) AvgHintLevel(57)

and average accessed for all chapters 2, 3, (3-3) HintProbs (56)

number of attempts 4, and 5. (3-4) AvgPerUniqInEx(54)

to solve problems, (3D) The number of optional (3-5) TotInEx(53)

and problem­ exercises completed for all (3-6) TotUniqInEx(51)

solving scores? chapters 2, 3, 4, and 5. (3-7) AvgPerUniqInTxt(50)

(3E) The average hint level (3-8) TotlnTxt (49)

used for all exercises for all (3-9) TotUniqlnTxt(47)

chapters 2, 3, 4, and 5. (3-10) OptAvgAtt(37)

(3F) The average number of (3-11) OptAvgSc(25)

attempts for each exercise in (3-12) OptSolved(36)

all chapters 2, 3, 4, and 5. (3-13) TotAvgAtt(34)

(3G) The total score for all (3-14) TotAvgSc(23)

exercises in all chapters 2, 3, (3-15) TotSolved(21)

4, and 5. (3-16) ExamScore(70)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-6

Data Sources and Analyses for Research Question-4

Question Data Analysis

(4) How do The operational definition of task Describe the mean scores of each of 15

students with difficulty is the average number of measures for easy, medium, and hard level

low and high attempts to complete the exercise. This exercises for low and high self-regulation

self-regulatory measure is a continuous variable groups using descriptive statistics. Easy,

skills perform ranging in difficulty from easy to medium, and hard level exercises were

in the use of in- medium to hard. selected from within the first 20 of 45

text worked (4A) Self-regulation questionnaire exercises to ensure the highest rate of student

examples, in- given at the end of section 2-7. completion. Exercises were classified

exercise worked (4B) Self-regulation questionnaire according to the average number of attempts

examples, hints, given at the end of the exam. that were required by students. 1-5 attempts

optional (4C) A count of the number of times all qualified for easy, 6-10 qualified for

exercises, in-text worked examples are run for all medium, and 11-20 qualified for hard. Self­

average number chapters 2, 3, 4, and 5. regulation was divided into four sub­

of attempts to (4D) The number of in-exercise worked components as in Question-1 including

solve problems, examples accessed for all chapters 2, 3, planning, self-checking, effort, and self-

and problem­ 4, and 5. efficacy; with Low group scores ranging

solving scores (4E) The number of optional exercises from 0.0 to 2.5, and High group scores

as the task completed for all chapters 2, 3, 4, and ranging from 2.6 to 4.0.

difficulty 5. Describe changes in mean scores for 5

increases? (4F) The average hint level used for all

exercises in all chapters 2, 3, 4, and 5.

measures of task difficulty. As the task

difficulty progressed from easy to hard,

percentage differences among low and high

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-6 (Continued)

Question D a ta_______ Analysis_______________ _

(4G) The average number of attempts self-regulation groups were compared to

for each exercise in all chapters 2, 3, 4, identify trends of increasing or decreasing

and 5. mean score for each of the 5 measures.

(4H) The total score for all exercises in Measures. Mean scores for each of the

all chapters 2, 3, 4, and 5. following raw and calculated data.

Percentage differences are also used to

predict trends:

(4-1) Planning and monitoring (meta-

cognitive activity)

(4-2) Self-efficacy and effort (motivation)

(4-3) EAttempts(38)

(4-4) EAvgAttempts(40)

(4-5) EHintProbs(61)

(4-6) EAvgHintLevel(63)

(4-7) EAvgScore(27), (4-8) MAttempts(41)

(4-9) MAvgAttempts(43)

(4-10) MHintProbs(64)

(4-11) MAvgHintLevel(66)

(4-12) MAvgScore(30)

(4-13) HAttempts(44)

(4-14) HAvgAttempts(46)

(4-15) HHintProbs(67)

(4-16) HAvgHintLevel(69)

(4-17) HAvgScore(33)

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4-7

Data Sources, and Analyses for Research Question-5

Question Data Analysis

(5) What common (5A) Observation of submitted Qualitative evaluation of submitted source code

mistakes do source code for selected and implications observations of common

students make in exercises from chapters 2, 3, 4, mistakes made.

solving and 5.

programming (5B) Requirements for students More specifically, perform a domain analysis of

problems? to complete worked examples submitted source code attempts to solve

and optional exercises. problems. Identify and cluster the differences

(5C) Findings from questions into domains to find common mistakes and

1-4 in parts I and II above. possible sources of those mistakes.

Analysis of descriptive statistics.

In summary, Question-1 addressed descriptive measures of student self-regulatory

skills, use of various types of worked examples, and problem-solving performance based

on exercise and exam scores. Questions- 2 and 3 focused on descriptive measures of

student math and computer experience, the use of various types of worked examples, and

problem-solving performance based on exercise and exam scores. Question-4 addressed

descriptive measures of task difficulty, self-regulatory skills, the use of various types of

worked examples, and problem-solving performance based on exercise and exam scores.

Question-5 revealed domains in problem solving that could help inform findings from

Questions 1 through 4.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5

RESULTS

This chapter presents results from the pilot implementation of the development effort.

Thirty-six students worked through 25 sections of content, 64 worked examples, and 45

programming exercises. Their efforts resulted in 12,436 raw data items generated by the

system, 1,944 data items calculated from raw data, and 1,602 submitted source code

samples for comparison. Descriptive statistical analyses were applied to identify

comparative performance factors and trends. Although the pilot effort ended in mid 2003,

CS Online has been put into production for the Clark County School District and

continues to grow in its service to computer science education. Approximately 200 new

students and teachers from ten high schools have entered the system since the close of the

project.

The chapter begins with a summary of student questionnaire results, followed by

findings pertaining to each of the research questions. For each of the first four research

questions, results of descriptive analytical methods are presented followed by a summary

of comparative performance among high and low groups. Findings for Question-5 are

then presented by providing an overview of the domain analysis and a description of the

resulting major and minor domains. Code comparisons are summarized in various tables

for each major and minor domain.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The 66 unique measures introduced in Table 4-1 are repeated in Table 5-1 for

convenient reference throughout the chapter. Some of the measures are repeated resulting

in a total of 71 measures shown in the table. Table 5-1 is a slight modification to Table 4-

1 in that the overall mean scores for each unique measure are provided in place of data

collection frequency. To illustrate, TotSolved, described as The total number o f exercises

solved, and Raw Variable 21, had a mean value of 29.4. Raw variables are indicated with

an ‘R’ in the Raw/Calc column, and calculated variables are indicated with a ‘C’. Labels,

like TotSolved, are provided to simplify references to the performance measures

throughout the chapter.

Summary of Questionnaire Results

As seen in Table 5-1 for calculated variables 5-8, the four sub-components of self­

regulation, students rated themselves with mean scores of 2.7 for planning, 2.8 for self­

checking, 3.2 for effort, and 3.2 for self-efficacy on a 4-point scale. Similarly, for

calculated variable 1, MathScore, students rated themselves with a mean score of 8.0 on a

13-point scale. Because the math questionnaire spanned experiences ranging from low-

level math to advanced placement statistics, it can be seen that students with a wide range

of experience levels were represented. For calculated variable 2, CompScore, students

rated themselves with a mean score of 6.5 on a similar 13-point scale. In summary, the

students in the pilot study were representative of a wide range of abilities in self­

regulation, math, and computer experience.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-1

Summary of Raw and Calculated Performance Measures with Mean Scores

Raw/
Num Performance Measure Description Label_________ Calc Mean

The following measures are from questionnaires:

1 Math Experience MathS core C 8.0

2 Computer Experience CompScore C 6.5

3 Trait Self-Regulation N/A R

4 Trait Self-Regulation w/Programming N/A R

State Self-Regulation (4 separate questionnaires) R

5 - Section 2.7 end: planning sub-component Planning C 2.7

6 - Section 2.7 end: self-check SelfChk C 2.8

7 - Section 2.7 end: effort Effort C 3.2

8 - Section 2.7 end: self-efficacy SelfEff C 3.2

9 - Exam end: planning sub-component Planning C 2.3

10 - Exam end: self-checking SelfChk c 2.3

11 - Exam end: effort Effort c 2.8

12 - Exam end: self-efficacy SelfEff c 2.3

13 - Section 3.7 end: planning sub-component Planning c 1.5

14 - Section 3.7 end: self-checking SelfChk c 1.5

15 - Section 3.7 end: effort Effort c 1.7

16 - Section 3.7 end: self-efficacy SelfEff c 1.7

17 - Section 4.4 end: planning sub-component Planning c 0.7

18 - Section 4.4 end: self-checking SelfChk c 0.7

19 - Section 4.4 end: effort Effort c 0.8

20 - Section 4.4 end: self-efficacy SelfEff c 0.8

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-1 (Continued)

Raw/
Num Performance Measure Description__________ Label_________ Calc Mean

21

The following measures are from exercises solved:

Total number of exercises solved TotSolved R 29.4

22 Percent of total number of exercises solved PctSolved C 0.7

23 Total average score for solved exercises TotAvgSc c 9.2

24 Number of optional exercises solved OptSolved R 1.4

25 Average score for optional exercises OptAvgSc C 7.2

26 Number of easy exercises solved ESolved R 5.0

27 Average score for easy exercises solved EAvgSC C 9.6

28 Number of medium exercises solved MSolved R 4.9

29 Average score for medium exercises solved MAvgSC C 9.6

30 Number of hard exercises solved HSolved R 4.9

31 Average score for hard exercises solved HAvgSC C 9.4

The following measures are from submitted attempts:

32 Total number of submitted attempts TotAtts R 356.5

33 Total # of exercises solved TotSolved R 29.4

34 Average number of submitted attempts TotAvgAtt C 11.9

35 Number of submitted attempts for optional exercises OptAtts R 28.9

36 Number of optional exercises solved OptSolved R 1.4

37 Average number of attempts for optional exercises OptAvgAtt C 18.6

38 Number of submitted attempts for easy exercises EAttempts R 17.5

39 Number of easy exercises solved ESolved R 5.0

40 Average Number of attempts for easy exercises EAvgAttempts C 3.5

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-1 (Continued)

Raw/
Num Performance Measure Description Label______ Calc Mean

41 Number of submitted attempts for medium exercises MAttempts R 42.7

42 Number of medium exercises solved MSolved R 4.9

43 Average number of attempts for medium exercises MAvgAttempts C 8.7

44 Number of submitted attempts for medium exercises HAttempts R 67.9

45 Number of medium exercises solved HSolved R 4.9

46 Average number of attempts for hard exercises HAvgAttempts C 13.9

The following measures are from in-text examples:

47 Total number of unique in-text examples visited TotUniqlnTxt R 22.5

48 Percent of in-text examples visited PctUniqlnTxt C 0.4

49 Total visits to in-text examples TotlnTxt R 35.7

50 Average number of visits to unique in-text examples AvgPerUniqlnT xt C 1.5

The following measures are from in-exercise examples:

51 Total number of unique in-exercise examples TotUniqlnEx R 4.3

52 Percent of in-exercise examples visited PctUniqlnEx C 0.1

53 Total visits to in-exercise examples TotlnEx R 11.6

54 Average number of visits to in-exercise examples AvgPerUniqlnEx C 2.2

The following measures are from hints:

55 Sum of hint levels used in all exercises HintSum c 15.7

56 Number of exercises where hints were used HintProbs R 6.6

57 Average hint level where hints were used AvgHintLev C 1.8

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-1 (Continued)

Num Performance Measure Description Label
Raw/
Calc Mean

58 Sum of hint levels used in optional exercises OptHintSum C 0.8

59 Number of optional exercises where hints were used OptProbs R 0.3

60 Average hint level in opt exercises where used AvgOptHintLev C 0.7

61 Number of easy exercises where hints were used EHintProbs R 0.4

62 Sum of hint levels in easy exercises EHintSum C 0.8

63 Average hint level in easy exercises where used EAvgHintLev C 0.5

64 Number of medium exercises where hints were used MHintProbs R 0.9

65 Sum of hint levels in medium exercises MHintSum C 2.0

66 Average hint level in medium exercises where used MAvgHintLev c 0.8

67 Number of hard exercises where hints were used HHintProbs R 1.3

68 Sum of hint levels in hard exercises HHintSum C 2.9

69 Average hint level in hard exercises where used HAvgHintLev c 1.2

The following measures are from the exam:

70 Exam score ExamScore R 36.8

71 Exam percentage ExamPct C 0.6

Research Question Findings

Question-1: How do students with low versus high self-regulatory skills perform in the

use o f in-text worked examples, in-exercise worked examples, hints, optional exercises,

and problem-solving scores?

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-2 shows mean scores for 15 performance measures broken down according to

the four components of self-regulation. Self-regulation was divided into two major

categories: metacognition and motivation. Metacognition was further sub-divided into the

two sub-components of planning and self-checking. Motivation was also further sub­

divided into the two sub-components of effort and self-efficacy. Each self-regulation sub­

component was divided into low and high score groups. Low group self-regulation scores

ranged from 1.0 to 2.5, and high group self-regulation scores ranged from 2.6 to 4.0.

Fifteen performance measures were then used to gauge relative performance between

the low and high score groups. These were the use of in-text worked examples

[AvgPerUniqlnTxt (50), TotlnTxt (49), and TotUniqlnTxt (47)], the use of in-exercise

worked examples [AvgPerUniqftiEx (54), TotlnEx (53), and TotUniqlnEx (51)], hint

usage [AvgHintLevel (57) and HintProbs (56)], completion of optional exercises

[OptAvgAtt (37), OptAvgSc (25), and OptSolved (36)], and problem solving

performance [TotAvgAtt (34), TotAvgSc (23), TotSolved (21), and ExamScore (70)].

The same 15 measures were also applied to similar tables that address questions 2, 3, and

4. Comparative differences among performance measures were determined first by

grouping and computing the self-regulation sub-components into two categories, low and

high. Individual performance measures were then grouped according to self-regulation

score groups, and the means were calculated.

Overall Findings Related to Self-Regulation

When comparing performance measures across score groups, relative performance

varied among low and high score sub-groups in each of the performance measures as

shown in Table 5-2. In summary, students in the high motivation score groups (effort

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and self-efficacy) outperformed students in the low motivation score groups in all

performance measures including their reliance on hints (less hints preferred), the number

of attempts required to complete required and optional exercises, and exercise and exam

scores. Those in the high planning score group performed at least as well or higher than

students in the low planning score group in most objective measures, with the exception

of the average hint level used and the total number of exercises completed. There was no

clear performance distinction among groups with low and high self-checking scores.

Self-Regulation and Worked Examples. Beginning with the use of in-text and in­

exercise worked examples, students in the high planning score group performed better by

visiting fewer worked examples per exercise in total and on the average [TotlnTxt (49),

TotUniqlnTxt (47), TotlnEx (53), TotUniqlnEx (51)]. High self-checking and effort

score groups also required less dependence on the use of worked examples. The

exception was the high self-efficacy score group, who visited more in-text and fewer in­

exercise worked examples than the low score group.

Self-Regulation and the use o f Hints. The second set of performance measures

involved the use of hints, or AvgHintLevel (57) and HintProbs (56). Students in the low

metacognition score groups used fewer hints on the average, but those in the low

motivation score groups used more hints. In addition, for all four sub-components of self­

regulation, students in the high score groups relied on hints in fewer exercises than the

low score groups. These findings indicate that students who worked harder and believed

they were capable of successfully completing the exercises relied less heavily on hints.

Another finding is that students in high meta-cognition and motivation score groups

depended less on the use of hints than those in the low score groups.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-regulation and Completion o f Optional Exercises. Students in the high

motivation score groups dramatically outperformed the lower score group in all three

performance measures in optional exercise completion [OptAvgAtt (37), OptAvgSc (25),

and OptSolved (36)]. They completed more and scored higher on all optional exercises,

which explains the larger average number of attempts per exercise. These findings show

that motivated students attempted and completed non-required work even through extra

time and submit attempts were required above and beyond expectation.

Self-regulation and Problem Solving Performance. Effort was the only sub­

component of self-regulation in which students in the high score group completed more

exercises [TotSolved (21)] than students in the low score group. While students in the

high motivation score groups required more attempts [TotAttempts (34)] to complete

more exercises than the low score sub-groups, high metacognition score groups submitted

fewer attempts for fewer completed exercises. In addition, students in the high score

groups for all self-regulation sub-components outscored low score group students on the

exam [ExamScore (70)].

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-2

Mean Performance Measures among Low and High Group

Sub-Components of Self-Regulation

Metacognition Motivation

Planning Self-Checking Effort Self-Efficacy

Low High Low High Low High Low High

Performance Measure 0.0- 2,6- 0.0- 2.6- 0.0- 2.6- 0.0- 2.6-

(Table-1 Variable) 2.5 4.0 2.5 4.0 2.5 4.0 2.5 4.0

AvgHintLevel (57) 1.8 2.0 1.8 1.9 2.3 1.8 2.2 1.2

HintProbs (56) 8.4 6.4 10.8 5.9 7.5 7.3 15.0 3.8

AvgPerUniqlnEx (54) 2.4 2.1 2.4 2.1 2.1 2.2 2.6 2.6

TotlnEx (53) 16.0 9.9 16.4 11.1 10.8 13.0 17.0 14.3

TotUniqlnEx (51) 5.8 3.4 5.2 4.2 4.8 4.4 6.0 5.5

AvgPerUniqlnTxt (50) 1.5 1.5 1.6 1.5 1.3 1.5 1.7 1.6

TotlnTxt (49) 42.6 33.2 37.4 37.5 36.0 37.7 43.5 51.5

TotUniqlnTxt (47) 27.5 21.2 23.7 24.2 24.3 24.0 0.4 0.5

OptAvgAtt (37) 15.0 16.3 17.9 14.8 12.8 16.1 5.6 29.5

OptAvgSc (25) 7.7 6.6 8.5 6.5 5.0 7.4 6.3 8.7

OptSolved (36) 1.4 1.6 1.2 1.6 0.5 1.6 1.3 2.2

TotAvgAtt (34) 12.4 11.2 12.6 11.3 8.6 12.2 11.3 14.4

TotAvgSc (23) 9.1 9.1 9.3 9.0 9.2 9.1 9.0 9.5

TotSolved (21) 31.4 29.9 31.9 30.0 26.8 31.1 35.0 33.0

ExamScore (70) 39.4 40.7 38.8 41.6 35.9 41.5 39.6 40.5

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Question-2: How do students with low versus high math experience perform in the use o f

in-text worked examples, in-exercise worked examples, hints, optional exercises, and

average number o f attempts to solve problems, and problem-solving scores?

Table 5-3 shows mean scores for the same 15 performance measures used in

Question-1. Comparative differences among performance measures were determined

first by grouping and computing math experience scores into two categories: low and

high, with low group math experience measures ranging from 0.0 to 7.4, and high group

math experience measures ranging from 7.5 to 13.0. The low score groups included

questionnaire scores in the poor to low range, and the high score group included scores in

the good to high range (see description of MathScore in Chapter-3).

Overall Math Experience Findings

Actual measures of math experience ranged from 3.5 to 13, and 25 of the 36 students

rated themselves in the good to high range with scores of 7.5 and above - this accounted

for 70 percent of the participants. When comparing performance measures across score

groups, relative performance varied among low and high score sub-groups in each of the

descriptive measures as shown in Table 5-3. In summary, students in the high math

experience score group outperformed the low score group in all performance measures.

The high score group depended less on hints, required fewer attempts to complete

required and optional exercises, and achieved higher exercise and exam scores.

Math Experience and Worked Examples. Beginning with the use of worked examples,

students in the high score group visited in-text worked examples at least as many times as

the low score group, but relied dramatically less on in-exercise worked examples

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[AvgPerUniqlnTxt (50), TotlnTxt (49), TotUniqlnTxt (47), AvgPerUniqlnEx (54),

TotlnEx (53), TotUniqlnEx (51)].

Math Experience and the use o f Hints. While the average hint level used in both low

and high score groups was close, students in the high score group required the use of

hints in dramatically fewer exercises. Once again, math experience helped students in

learning computer programming concepts - the higher score group required less help.

Math Experience and Completion o f Optional Exercises. Similar to self-regulation,

students in the high score group dramatically outperformed students in the low score

group in all three performance measures in optional exercise completion [OptAvgAtt

(37), OptAvgSc (25), and OptSolved (36)]. They completed more and scored higher on

all optional exercises, which explains the larger average number of attempts per exercise.

These findings show that math experienced students will attempt and complete non­

required work at the cost of more effort.

Math Experience and Problem Solving Performance. As already explained in the

above section on worked examples, students in the low score group only slightly

underperformed in the number of exercises completed [TotSolved (21)], the average

exercise score [TotAvgSc (23)], and the exam score [ExamScore (70)]. These findings

are indicative that students with less math experience can succeed in learning

introductory programming.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-3

Mean Performance Measures among Low and High Math Experience Groups

Performance Measure

(Table 5-1 variable)

Low

0-7.4

High

7.5-13

AvgHintLevel (57) 2.0 1.7

HintProbs (56) 10.6 5.1

AvgPerUniqlnEx (54) 2.7 2.1

TotlnEx (53) 19.9 10.0

TotUniqlnEx (51) 6.3 3.8

AvgPerUniqlnTxt (50) 1.6 1.5

TotlnTxt (49) 34.6 36.6

TotUniqlnTxt (47) 20.6 23.3

OptAvgAtt (37) 13.5 20.8

OptAvgSc (25) 5.5 7.6

OptSolved (36) 0.6 1.6

TotAvgAtt (34) 14.7 11.2

TotAvgSc (23) 9.0 9.3

TotSolved (21) 27.3 29.9

ExamScore (70) 34.9 37.2

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Question-3: How do students with low versus high computer experience perform in the

use o f in-text worked examples, in-exercise worked examples, hints, optional exercises,

and average number o f attempts to solve problems, and problem -solving scores?

Table 5-4 shows mean scores for the same 15 performance measures used in

Questions 1 and 2. Comparative differences among performance measures were

determined first by grouping and computing computer experience scores into two

categories: low and high, with low group computer experience measures ranging from 0.0

to 7.4, and high group computer experience measures ranging from 7.5 to 13.0. The low

score groups included questionnaire scores in the poor to low range, and the high score

group included scores in the good to high range (see description of CompScore in

Chapter-3).

Overall Computer Experience Findings. Actual measures of computer experience

ranged from 3.5 to 12, and 24 of the 36 students rated themselves in the low to poor range

with scores of 7.0 and below - this accounted for 67 percent of the participants. Relative

performance varied among low and high score sub-groups in each of the performance

measures as shown in Table 5-4. In general, students in the high score group

outperformed students in the low score group in most objective performance measures

including less dependence on hints, fewer number of attempts required to complete

required and optional exercises, and higher exercise and exam scores.

Computer Experience and Worked Examples. Beginning with the use of worked

examples, students in the high score group visited in-text worked examples slightly less

than those in the low score group, but relied somewhat more on in-exercise worked

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

examples [AvgPerUniqlnTxt (50), TotlnTxt (49), TotUniqlnTxt (47), AvgPerUniqlnEx

(54), TotlnEx (53), TotUniqlnEx (51)].

Computer Experience and the use o f Hints. Students in the high score group required

the use of hints in fewer exercises and used a lower hint level on the average than

students in the low score group. Similar to math experience, students in the low score

group relied more heavily on hints to complete the exercises. Once again, hints appear to

be helpful aid for students with average to low math and computer skills.

Computer Experience and Completion o f Optional Exercises. Similar to math

experience, students in high score group outperformed those in the low score group in all

three performance measures in optional exercise completion [OptAvgAtt (37), OptAvgSc

(25), and OptSolved (36)]. Although high score group students completed more and

scored higher, the differences aren’t as dramatic as those in the low score group. The

differences are small enough to observe that students in the high score group were not

necessarily inclined to expend dramatically more effort toward solving optional

exercises.

Computer Experience and Problem Solving Performance. Similar to students in the

low math experience score group, students in the low computer experience score group

only slightly underperformed in the mean number of attempts required per exercise

[TotAvgAtt (34)] and the average exercise score [TotAvgSc (23)]. They underperformed

slightly more on the total number of exercises completed [TotSolved (21)] and the exam

score [ExamScore (70)].

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-4

Mean Performance Measures among Low and High Computer Experience Groups

Performance Measure

(Table 5-1 variable)

Low

0-7.4

High

7.5-13

AvgHintLevel (57) 1.9 1.6

HintProbs (56) 7.5 6.1

AvgPerUniqlnEx (54) 2.1 2.3

TotlnEx (53) 12.1 12.4

TotUniqlnEx (51) 3.6 4.7

AvgPerUniqlnT xt (50) 1.6 1.5

TotlnTxt (49) 37.3 35.7

TotUniqlnTxt (47) 23.0 22.6

OptAvgAtt (37) 17.9 19.4

OptAvgSc (25) 6.8 7.2

OptSolved (36) 1.1 1.4

TotAvgAtt (34) 11.8 12.1

TotAvgSc (23) 8.9 9.3

TotSolved (21) 26.9 30.0

ExamScore (70) 33.0 37.8

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Question-4: How do students with low versus high self-regulatory skills perform in the

use o f in-text worked examples, in-exercise worked examples, hints, optional exercises,

average number o f attempts to solve problems, and problem-solving scores as the task

difficulty increases?

Table 5-5 shows mean scores for 5 performance measures applied for each of three

groups of exercises that increased in difficulty from easy, to medium, and then to hard',

for a total of 15 measures. These were the total and average number of submitted

attempts for easy, medium, and hard exercises [EAttempts(38), MAttempts(41),

HAttempts(44), EavgAtts(40), MavgAtts(43), and HavgAtts(46)]; the total number of

problems and average hint level where hints were used for easy, medium, and hard

exercises [EhintProbs(61), MhintProbs(64), HhintProbs(67), EAvgHintLev(63),

MAvgHintLev(66), HAvgHintLev(69)]; and the mean score achieved on exercises

[EAvgSc(27), MAvgSc(29), HAvgSc(31)].

Similar to Question-1, comparative differences among performance measures were

determined first by grouping and computing the self-regulation sub-components into two

categories, low and high. Individual performance measures were then grouped according

to self-regulation score groups, and the means were calculated. Analysis was conducted

by comparing each of the five performance measures across easy, medium, and hard level

exercises for each self-regulation score group. Comparisons were percentage differences

(marginal differences) as the exercise difficulty increased. Increasing margins from easy

to medium to hard indicated positive trends, and decreasing margins indicated negative

trends.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-5

Mean Performance Measures among Low and High Group Sub-Components

of Self-Regulation as Task Difficulty Increased

Performance Measure

(Table-1 Variable)

Meta-cognition Motivation

Planning Self-Checking Effort Self-Efficacy

Low

0 .0 - 2.5

High

2 .6 - 4.0

Low

0 .0 -2.5

High

2 .6 -4.0

Low

0 .0 - 2.5

High

2 .6 -4.0

Low

0 .0 - 2.5

High

2 .6 -4.0

EAttempts (38) 18.5 16.6 18.4 16.8 18.0 17.2 19.5 17.0

Mattempts (41) 49.6 40.1 48.9 41.3 44.8 43.3 56.0 41.6

HAttempts (44) 88.5 59.5 9.7 9.5 53.5 72 110.5 63.6

EavgAtts (40) 3.7 3.3 3.7 3.4 3.6 3.4 3.9 3.4

MavgAtts (43) 9.9 8.4 9.8 8.6 9.0 8.9 11.2 8.6

HavgAtts (46) 17.7 12.1 86.2 62.8 10.7 14.6 22.1 12.9

EhintProbs (61) 0.5 0.5 0.6 0.5 1.0 0.4 0.5 0.5

MhintProbs (64) 1.0 1.0 0.9 1.0 1.0 1.0 1.5 0.9

HhintProbs (67) 1.4 1.4 17.2 12.8 1.0 1.4 2.8 1.2

EavgHintLev (63) 0.8 0.4 1.0 0.3 1.8 0.4 1.0 0.5

MAvgHintLev (66) 0.7 1.0 1.6 2.6 0.5 1.0 1.0 0.9

HavgHintLev (69) 1.1 1.1 1.6 1.3 1.3 1.1 1.5 1.0

EAvgSc (27) 9.6 9.6 9.5 9.6 9.4 9.6 9.6 9.6

MAvgSc (29) 9.6 9.5 0.8 1.0 9.7 9.6 9.5 9.6

HAvgSc (31) 9.4 9.3 1.0 1.1 9.8 9.3 9.7 9.3

In Table 5-6, the percentage differences among easy, medium, and hard level

performance measures are presented. Identifiable trends are indicated by groups of three

numbers (easy, medium, and hard) highlighted in shades of grey. Example 4-1 below

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

explains Table 5-6 by using the low and high planning score groups across increasing

difficulty o f the EAttempts, MAttempts, and HAttempts performance measures:

Example 4-1. The low planning score group required 18.5 average attempts to

complete easy exercises compared to 16.6 attempts for the high planning group. The

percentage difference was computed as [-10.3%], using low planning as the reference

[(18.5-16.6)/18.5]. Similar differences were computed for medium and hard level

exercises, resulting in [-19.2] and [-32.8] percent differences for medium [(49.6-

40.1)/49.6] and hard [(88.5-59.5)/88.5] levels, respectively. The trend is seen by

observing percentage differences among the three percentages: -10.3% for easy; 19.2%

for medium; and -32.8% for hard level exercises.

This trend can be interpreted as follows: Students in the high planning score group

required increasingly fewer attempts to complete exercises than those in the low planning

score group as the task difficulty increased: 10.3% fewer attempts fo r easy, 19.2% fewer

attempts for medium, and 32.8% fewer attempts fo r hard level exercises.

Figures 4-1 through 4-4 illustrate these trends for the five performance measures

(Attempts, AvgAttempts, HintProbs, AvgHintLevel, and AvgSc) plotted against

increasing task difficulty (easy, medium, and hard). Each figure plots all trends for one of

the four sub-components of self-regulation including planning, self-checking, effort, and

self-efficacy. The plotted values are the percentage gains or losses shown in Table 5-6.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-6

Percentage Difference in Performance Measures among Sub-Components of

Self-Regulation as Task Difficulty Increased

Performance Measure

(Table-1 Variable)

Meta-cognition Motivation

Planning Self-Checking Effort Self-Efficacy

Percentage

Difference

Percentage

Difference

Percentage

Difference

Percentage

Difference

EAttempts (38) -8.6 ■ -12.8

Mattempts (41) m . -15.5 ' l i -25.7

HAttempts (44) ,12.? -2.1 m 42.4

EavgAtts (40) -108 -E.l -5 6

MavgAtts (43) -15 2 jy to i t ! lit
HavgAtts (46) -31 6 -27.1 tilt iis
EhintProbs (61) 0.0 -16.7 -60.0 0.0

MbintProbs (64) 0.0 11.1 m 0m
HhintProbs (67) 0.0 -25.6 m m
EavgHintLev (63) -50.0 -70 -77.8 *

MAvgHintLev (66) 42.9 62.5 100.0

HavgHintLev (69) 0.0 -18.8 -15.4 fiBB
EAvgSc (27) 0.0 1.1 0.0

MAvgSc (29) -1.0 25.0 l.i

HAvgSc (31) -1.1 -10.0 sSU -4.1

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

□ Attempts

isAvgMempts

i HintProbs

l AvgHintLevel

lAvgSc

Easy

AvgSc
AvgHintLevel

HintProbs
Attempts

Attempts
Medium

Hard

Figure 5-1. Percentage Differences in Five Performance Measures as theTask Difficulty

Increased for the Planning Sub-component of Self-Regulation

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

□ Attempts

DAvgAttempts

B HintProbs

■ AvgHintLevel

■ AvgSc

/ ' AvgSc
/ ' AvgHirvtLevel

HintProbs

Easy Medium

M H E

Hard

Avg Attempts
Attempts

Figure 5-2. Percentage Differences in Five Performance Measures as the Task Difficulty

Increased for the Self-Checking Sub-component of Self-Regulation

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

□Attempts

BAvg Attempts

0 HintProbs

■AvgHinfLeve!

I Avg Sc

* * * * * r AvgSc
/ AvgHintLe^l

HintProbs
' AvgAttempls

Easy
Attempts

Medium Hard

Figure 5-3. Percentage Differences in Five Performance Measures as the Task Difficulty

Increased for the Effort Component of Self-Regulation

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

-40 r

-60

Easy

□Attempts

BAvg Attempts

m HintProbs

■AvgHintLevel

■ AvgSc

, " - gSc
gHintLeve!

HintProbs
AvgAttempts

Attempts
Medium Hard

Figure 5-4. Percentage Differences in Five Performance Measures as the Task Difficulty

Increased for the Self-Efficacy Component of Self-Regulation

Overall Findings Related to Self-Regulation and Increasing Task Difficulty

A total of ten identifiable trends emerged from the analysis depicted in Table 5-6.

Seven of these appeared in the effort and self-efficacy sub-components of self-regulation.

Two of the remaining three appeared in planning, and the last appeared in self-checking.

It appears that effort had the greatest impact on performance factors as the task difficulty

increased.

Attempts to Complete Exercises and Increasing Task Difficulty. This was the

performance factor most greatly impacted by self-regulation and increasing task

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

difficulty. In all four sub-components of self-regulation, trends in MavgAtts emerged,

and trends in Attempts emerged in two of the components. With the exception of effort,

students in the high score groups for planning, self-checking, and self-efficacy

increasingly submitted fewer attempts to complete exercises as the task difficulty

increased. Conversely, those in the high effort score group increasingly submitted more

attempts as the task difficulty increased. Students in the high planning score group

increasingly submitted fewer total attempts as the task difficulty increased, but those in

the high effort score group submitted more total attempts. These findings show that

students in the high effort score group increasingly tried harder as the task difficulty

increased.

The Use o f Hints and Increasing Task Difficulty. Two identifiable trends emerged

from the use of hints as the task difficulty increased. The first trend showed that students

in the high effort score group tended to depend on hints more than the lower score group

as the task difficulty increased. The second trend showed an opposite effect for students

in the high self-efficacy score group. These students relied less on the use of hints as the

task difficulty increased in both the number of exercises where hints were used, and the

average hint level reached in each of those exercises.

Exercise Score and Increasing Task Difficulty. One identifiable trend emerged from

the average score on exercises (AvgSc). Students in the high effort score group scored

relatively lower on exercises as the task difficulty increased. Interestingly, while this

same group increasingly submitted more attempts and depended more on hints, they also

score lower.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Question-5: What common mistakes do students make in solving programming problems?

To answer the question, insight into what students do between corrections to

programming errors and subsequent runs is needed. In a classroom setting where students

are writing programs using a traditional development environment, changes to source

code might not be tracked by the instructor or the development software, resulting in

potentially hundreds of unknown changes and runs within the scope of a single class

period. Working within the online system environment, an ethnographic record of every

exercise run was captured by the system for every student and every exercise, thus

empowering the present investigator to apply the verbatim principle of qualitative

research (Spradley, 1980).

Data from ten exercises ranging from medium to hard difficulty were selected to

observe changes made to source code between subsequent run attempts. Medium to hard

level problems were selected because of the wider range of attempts to complete each

exercise. The selected exercises and descriptive statistical information are shown in Table

5-7. This section provides an overview of findings in the order of how the domain

analysis was conducted and for each of seven major identified domains.

Domain Analysis

The first step in the analysis process was to identify major domains, or categories of

common changes made to source code between successive runs (each run constituted

submitted source code into a database). This was done by observing source code from

contiguous runs and identifying the major changes that occurred between the runs. The

second step involved isolating the comparison to a sub-domain of the major domain if

necessary. Four of the major domains were divided into sub-domains based on observed

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

data. The third step involved identifying the dominant change - or the most likely reason

for the change. Based on these findings, the fourth step was to identify common problems

that students made in the process of programming.

First Major Domain: No Change

The most common domain was No Change, where the source code between adjacent

runs was identical. This domain accounted for 23% of all program runs, and could be

explained with further analysis of inherent sub-domains. While it’s difficult to know

exactly why no change occurred, inferences could be made based on time intervals

between successive runs. Since the system clock resolution was limited to one second,

successive runs with an identical time stamp might infer an erroneous double or triple­

click of the mouse on the single-click submit button. These accounted for 6% of all No

Change runs. Another inference made from time stamp observation was a relatively short

span of 3 to 5 seconds, which might imply the program generated no output, or appeared

to not run, and the student ran it again just to be sure. These accounted for 11% of all No

Change runs. Most other No Change runs were mainly unknowable and accounted for

83% of all those runs. Since students were enabled to re-visit and run previously solved

exercises at any time, many of these might be explained by student interest in seeing or

showing their work in action. The only attributable error in this domain would be

unfamiliarity with the programming environment, thus leading to unnecessary multiple

clicks of the mouse.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Second Major Domain: Syntax Errors

The second most common domain was Syntax Errors, which accounted for 18% of all

program runs. Because of the complexity of programming languages and the myriad of

syntax rules (and therefore potential errors), sub-domains were identified to simplify the

list to the most common. Syntax errors mainly resulted from a misapplication of the rules

while structuring a program statement. While it was shown to be difficult to know why

the rules were misapplied, misuse of parenthesis, function parameters, quotes, and curly

brackets together accounted for 31% of all syntax errors. The other, more detailed errors

accounted for the remaining 69%. Like good writing, good programming will result from

knowing the rules and plenty of practice. In the case of syntax errors, it’s likely that

these will always be the most common type of error - at least for beginning

programmers.

Third Major Domain: Clean Up

The third most common domain was Clean Up, or the process of modifying code to

be more readable or self-documenting, which accounted for 17% of all observed program

runs. Like No Change, Clean Up does not qualify as a programming error, but does

indicate that students are interested in how their code looks and reads. Removal of test

code also falls into this domain.

Fourth Major Domain: Logic Change

The fourth major domain was Logic Change, which accounted for 14% of all

observed program runs. Logic Change was defined as a correction to a logic error or bug

in the program. Most programs with logic errors will run, but will also produce erroneous

output or results. The most common logic errors observed involved changing loop

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

counter variable bounds, which were incorrectly initialized. Most other logic errors are

very difficult to ascertain, mainly because of the level of analysis required to observe a

program that runs but doesn’t produce expected output. Up to this point, syntax and logic

errors combined accounted for 32% of modified programming errors.

Fifth Major Domain: Build Upon

The fifth major domain, which accounted for 11% of all runs, was Build Upon.

Similar to No Change and Clean Up, Build Upon did not contribute to programming

errors, but to improvements or enhancements in the source code over previous runs.

While errors might have been present in the augmented code, the dominant intent was to

build upon the previous code.

Sixth Major Domain: Sudden Change

The sixth major domain was Sudden Change, which accounted for 8% of all program

runs. Sudden Change is interesting in that it doesn’t reflect any type of programming

error, but rather a paradigmatic shift in the problem solving process. Because of the

nature of such a change, further analysis was conducted to try to determine the reason for

the change - resulting in the sub-domains of plagiarism, application of hints or examples,

return to previous code, or other.

The use of hints or worked examples, which accounted for 19% or all sudden

changes, was obvious because of familiarity with the example and hint source code. In

most cases, students reached a dead-end, gave up, and resorted to seeking help. Hints

were the only form of available help until all three levels had been exhausted.

Plagiarism, or 17% or all sudden changes, was determined based on a radical change

in source code with no reference to hints, examples, or writing style established by

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

previous work. Considering the online environment in which students worked, plagiarism

accounted for only 1.36% of source code changes overall. This statistic was encouraging

considering the ease with which source text could be E-Mailed or distributed through a

shared server.

Another promising statistic was the rate at which students returned to source code

from a previous attempt, or 15% of sudden changes. In other words, students were just

about as willing to go back and start over as they were willing to plagiarize, or 1.2% of

the time. The majority of Sudden Change observations were attributed to students writing

code offline, the copying and pasting that code into the online system. These accounted

for 49% of all sudden change runs, and were determined by long time intervals between

runs. This type of code writing was sometimes encouraged if Internet connectivity was

unreliable.

Seventh Major Domain: Grammar

The seventh major domain was Grammar, or 5% of all runs. It was decided to

separate grammar from syntax since a misspelled variable name or case sensitivity

mistake was not related to erroneous statement structure. Seventy-eight percent of all

grammar errors resulted from misspelled variable names, 17% were misspelled reserved

words, and 5% were attributed to errors in case sensitivity. Because variable names can

be quite long, and capitalization of words within the name was required, errors of this

nature were likely.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-7

Frequencies of Exercises selected for Qualitative Analysis of Common Mistakes

Exercise Difficulty Total Attempts Average Attempts

2-7-1 H 436 12.5

3-3-2 H 315 12.6

3-3-3 M 144 6.9

3-3-4 H 257 13.5

3-3-5 H 202 11.2

3-5-1 H 386 13.8

3-5-2 H 993 36.8

3-5-3 H 726 26.9

3-7-1 M 203 9.7

3-7-2 H 258 12.3

A domain analysis was performed by visually comparing source code from all pairs

of submitted attempts. This translated to 1602 comparisons of source code submitted by

36 students over the course of 10 weeks. As with any analysis, some of the domains were

apparent while others were tacit, thus requiring the use of inferences to extract meaning.

For example, a drastic change in source code between attempts might infer a complete

start over, copy and paste from an example, or plagiarism. Analytic terms and their

descriptions related to computer programming were selected to identify major domains

are shown in Table 5-8.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-8

Analytic Terms for Major Domains Related to Changes in Student Source Code

Major Domain Description

Build upon Student added to or built upon previous code

Clean-up Formatting of source code to be more self-descriptive or self-

commenting

Comment Add, delete, or move a comment

Dissection Code is split and expanded to add more functionality

Grammar The structuring of major code segments such as object definitions

Logic The code obeys syntax rules but the output is incorrect or unexpected

No change Code remained the same

Sudden change Code changed significantly enough to be considered completely

different from the previous attempt

Syntax Change in a statement’s syntax

Domain analysis was limited because it could describe, in some cases, what appeared

to be the most significant change. Since many instances of change could be made

between pairs of attempts, the most likely or dominant change was recorded. For

example, a single attempt might include a combination of Build upon, correction of a

Syntax error, and a Logic change to improve upon a previous problem. If the dominant

change was the correction of a syntax error, that domain was recorded. This rule was

established to help make the task of analyzing thousands of source code pairs feasible in

a limited amount of time. The major domain analyses for each exercise are presented in

Figures 4-2 through 4-11 followed by a summary of all exercises involved in Figure 5-15.

Refer to Appendixes D and E for examples of source code comparison.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S'c
©
3
er
Su.

80
70
60
50
40
30
20
10
0

Major Domain

Figure 5-5. Exercise 2-7-1 Major Domain Frequency Distribution.

S'Cm
3

i

3 5

30
25
20 -I

15
10
5
0 I

33

22

1C 12

t>S
OF c / s < /

Major Domain

Figure 5-6. Exercise 3-3-2 Major Domain Frequency Distribution.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Major Domain

Figure 5-7. Exercise 3-3-3 Major Domain Frequency Distribution.

>»o£0)
3

?

45
40
35
30
25
20
15
10
5
0

-41-

• -4
—j

‘ * ' . ^ *- % is
A r sM•

m
IO - 4n

8 ŜJ‘

i
7 .

n -
! ill $

•t&j. ItfO,, ’ •,.a 1

<$ <?
XT rd'

<5̂ ■<& -cP ^r<& <T cF CF <3*KO .vo vO
<$ * x6®v °-

Major Domain

Figure 5-8. Exercise 3-3-4 Major Domain Frequency Distribution.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Major Domain

Figure 5-9. Exercise 3-3-5 Major Domain Frequency Distribution.

>.o
c
0
3£T
£U.

70
60
50
40
30 +
20
10 -I
0

-63

37 .3SL.

lilt
a-—I-*— ------ S i 16

| | i

S ||| f t ~ <r-~— r—t
I

Oe -.O'

&
/ ■

o'&
i f

v°

Major Domain

<F
5>N

&
t f i

< 3 x*+

Figure 5-10. Exercise 3-5-1 Major Domain Frequency Distribution.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160
140

> 120
^ 100

- 1Q3
c
0
3
IT
£y.

60 f - .
40 - - - 2 4 -

Major Domain

Figure 5-11. Exercise 3-5-2 Major Domain Frequency Distribution.

>.oc®

60
50
40

30
20
10

0

<?

51
;-f ■

II '
...4U?

... 4A . ,.1,&
lit
p

- - - - 24

r a a I i
............... n -
...6 p i

° * ;
& J (L-*. (ti- I_______ ^ ..wsm..LsLv-- - ra ...El

o° < f

&

&
r 'f f

v °$
Cf

<$>
&

Major Domain

Figure 5-12. Exercise 3-5-3 Major Domain Frequency Distribution.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

10 4

- 0-

Major Domain

Figure 5-13. Exercise 3-7-1 Major Domain Frequency Distribution.

>»o
®
3

50
45
40
35
30
25
20
15
10
5
0

47

.cf- 0<*

<r / . s
&

o' &
£& &

V s&cj>
< r

Major Domain

Figure 5-14. Exercise 3-7-2 Major Domain Frequency Distribution

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Major Domain
!
; _ ______________

Figure 5-15. Summary of Major Domain Frequency Distributions.

Sub-domains

Four of the nine major domains were further divided into minor sub-domains. These

include Grammar, No change, Sudden change, and Syntax. If the cause for a change

could be inferred, a sub-domain was noted to clarify that inference. For example, a

sudden change might take place for various reasons including a desire to start over, use of

an in-text or in-exercise example, or use of borrowed code. In many cases there was no

way to know the exact reason for the dramatic change. Plagiarism (borrowed code) was

inferred if the change was attributable to the use of hints and the programming style was

dramatically different from previously observed code. The major domains and their sub-

domains are listed in Table 5-9 with descriptions for each.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-9

Sub-domains of Major Domains of Changes Students Make to Source Code

Major Domain Minor Sub-domain Description

Grammar

No change

Sudden change

Misspell

Case sensitivity

Variable name

Did it run?

Desire to start over

Double/triple click

Debug console clear

Other

The structuring of major code segments

such as object definitions

Variable or statement was misspelled

Correction was made to account for case

sensitivity in the language

Change in the use of variable because it was

misspelled or the wrong variable was used

Code remained the same

Unsure about whether the program ran, the

exercise was submitted again

Complete re-start of the solution

Double or triple clicking a submit button

when only one click is necessary. Multiple

copies were submitted as a result.

Following the first submit, the debug

console was full of error messages from

previous runs. The console was cleared and

the program was run again.

Any other unexplainable submittal where

the source code did not change.

Code changed significantly enough to be

considered completely different from the

previous attempt

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5-9 (Continued)

Major Domain Minor Sub-domain Description

Syntax

Plagiarism

Hint or example

Previous code

Other

() Parenthesis

{ } Brackets

[] Brackets

Misuse of quotes

Function parameter

Language confusion

General confusion

Other

Code taken from an external source that’s

pasted over the previous submitted code

Source code from a hint, in-text example, or

in-exercise example was copied.

Code from a previous run (that was saved

somewhere in a text file) was copied, pasted

back, and run

Any other unexplainable dramatic change in

source code

Change in a statement’s syntax

Incorrect pairing or use of parenthesis

Incorrect pairing or use of curly brackets

Incorrect pairing or use of square brackets

Quotes used to delimit strings or in objects

and other definitions was misused

Parameters or arguments were mis-applied

Order of operations error or incorrect

application of math functions

Incorrect use of order of operations, loop

counters, logical combinations, etc.

Any other syntax error

A summary of sub-domain frequency distributions for each of the major domains is

provided in Figures 4-16 through 4-19.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

m

6 0 - ______ ___ __ _ _____ -------*4,---------— _________ _
i

5 0 - _______ . H W __ __________ f 'H —___ _„______ _

> ,
o
c 4 0 -

*

®
3
0 " 3 0 -

•Vf . :
\

4t)
u . 2 1 '• i ;,i|7 :

-wr-wa

i

(1) misspell (2) case sensitivity (3) variable name
ji M i n o r Sub-domain

Figure 5-16. Summary of the Grammar Sub-domain Frequency Distributions.

o
C
®

3 0 0 np l f

7 5 0 -

ooCM

sr*$

1 5 0 -

1 0 0

5 0

0

43
HtllBftft

29 -24-
j m .

.283.......

,

1
Mi
I S
n i l !

(1) Don't (2) Desire to (3) (4) Debug (5) Other(run
know it's start over Double/triple console clear for grade,etc)
running click

Minor Sub-domain

Figure 5-17. Summary of the No-change Sub-domain Frequency Distributions.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

60

50

40

30

20

10

0
;

(4) Other(1) Plagiarism (2) Hint (3) Return to
prevous code

Minor Sub-domain

Figure 5-18. Summary of the Sudden Change Sub-domain Frequency Distributions.

>oc
©3r

<£<$>

&
ĉ d f

^ ^*P ^
« / '*

<F

&

Minor Sub-domain

Figure 5-19. Summary of the Syntax Sub-domain Frequency Distributions

In summary, an analysis of code samples between runs showed that students not only

fixed errors between runs, they also spent considerable time re-running programs (no

change), cleaning-up code, and building upon previous code. Insight into these behaviors

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

makes it possible to more clearly understand learning patterns while solving

programming problems. The most common mistakes made were syntax, logic, and

grammar, in that order. Findings varied among individual exercises to the extent that no

discemable patterns emerged. Many reasons for changes to source code were

unknowable because of limitations imposed on the analysis. The limitations were

imposed mainly because of the complexity of the programming language and the many

ways mistakes can be made. Changes to source code that were obvious or discemable

within the analysis limits were those that contributed to the statistics.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6

DISCUSSION

This chapter is divided into five parts. Part 1 provides a discussion of the major

results presented in Chapter 4. Part 2 presents the implications for practice resulting from

the study. Part 3 presents the implications for research. Part 4 addresses the overall

efficacy of CS Online as an instructional environment, and Part 5 provides the limitations

inherent in the present study. Part 6 provides concluding remarks.

Part 1: Discussion of Results

This section presents a discussion of results based on student performance in the use

of in-text and in-exercise worked examples, hint usage, completion of optional exercises,

and problem solving performance. Due to the small sample size, only descriptive

statistics were provided. Thus, the discussion of the findings only describes the

performance of the 36 students involved in this current project. The discussion begins

with self-regulation and student performance including findings related to increasing task

difficulty, and then continues with math experience, student performance, computer

experience, and student performance. The section closes with a discussion of common

mistakes made by students while solving programming problems. Findings from the

study can be used for further development of CS Online and future research.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-Regulation and Student Performance

Self-regulation seems to affect student performance in the use of CS Online, but

given enough time, students with lower measures might succeed in completing course

content with acceptable scores. It was shown that students who were more highly

motivated outperformed the lower motivation group in all objective performance

measures. These findings are consistent with research that shows students who are highly

self-motivated establish high academic goals and achieve at a higher level (Schraw,

1998). In addition, those with higher planning performed at least as well or higher than

lower planners in most objective measures, with the exception of the average hint level

used and the total number of exercises completed. To begin, student dependence on

worked examples in CS Online reinforces research that their use is paramount to effective

programming instruction (Van Merrienboer & Krammer, 1987) and as a skills acquisition

system (Anderson, Fincham, & Douglass, 1997). It appears that worked examples can be

important to all students regardless of their level of self-regulation with the exception,

however, of planning. Planning has already been determined to be an essential

component required for effective programming instruction (McCoy, 1990). By

emphasizing sound program design through planning, students will need to reference in-

text examples less frequently and, thereby, direct their attention more toward

synthesizing their own solutions.

The use of hints was especially important in the pilot study since students were

required to rely on them as first order assistance. The same will likely be true in online

settings where teachers may not be as accessible as in a traditional classroom. Knowing

that building students’ self-confidence and encouraging them to try harder can result in

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

successful completion of assigned work with no grade penalties (assuming a penalty for

hint usage). Students can try harder by learning to master the art of debugging - which

lies at the core of good programming practice. Debugging can also be viewed as the

mechanism by which algorithmic and logical design is transformed into a functional

product. In addition, the use of hints can be an effective tool to reach the less motivated.

Optional problems appear to be a very useful tool to provide additional learning

opportunities to students who tend to finish their work quickly. In the case of CS Online,

findings showed that students who were more highly motivated were those who sought

out and completed additional work. The practical importance of these findings is that in

addition to expanding project functional requirements as enrichment opportunities,

optional exercises should also be incorporated as enrichment for the more motivated.

These can come in the form of additional projects or standalone exercises.

Since the mean exercise and exam scores were comparatively similar among self­

regulation sub-groups, it appears that students who try hard can succeed in learning

introductory computer programming, regardless of their mathematical or technical

background. This finding is important, knowing that students with various math and

computer backgrounds can learn algorithmic and logical thinking in the context of a well-

designed learning environment. It also appears that a lower number of completed

exercises is not indicative of a lower level of achievement, but rather a reflection of

higher quality in planning and self-checking that takes place during program design

(Hancock, 1988).

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-Regulation, Increasing Task Difficulty, and Student Performance

The first trends found were in the planning, self-checking, and self-efficacy sub­

components of self-regulation with the total and average number of attempts required to

complete exercises as the task difficulty increased. Students in high self-regulatory skill

groups required fewer attempts to solve increasingly difficult exercises than the lower

score group. It appears that self-regulation can be an important learner characteristic that

can dramatically affect programming skills, especially when the exercise difficulty

increases (Anderson, Fincham, & Douglass, 1997). Training in self-regulatory skills

acquisition might require more time on the front-end of the problem solving process, but

will, in effect, serve to build more efficient problem solvers in the long run.

Similarly, two salient trends emerged from the use of hints as the task difficulty

increased. The first trend showed that students who exerted higher effort tended to

depend on hints more than the lower score group as the task difficulty increased. The

second trend showed an opposite effect for students with high self-efficacy. These

students relied less on the use of hints as the task difficulty increased in both the number

of exercises where hints were used, and the average hint level reached in each of those

exercises. These trends might indicate that although both are related to motivation, higher

self-efficacy can have an opposite effect from effort when the task difficulty increases.

Thus, students with higher confidence in their ability to tackle harder problems might

need less help than those who are motivated hard workers. This is important in that

confidence building might be more important in the long run than just encouraging hard

work.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Math Experience and Student Performance

Students in the high math group outperformed the low score group students in all

performance measures of the pilot study. These findings indicate that students with more

math experience may perform better in programming classes; findings that are consistent

with other related research (McCoy & Dodl, 1989). Students interested in learning

computer programming can be encouraged to take math classes either as pre-requisites or

concurrently. However, since students in the lower math experience group also showed

success by completing slightly fewer exercises and scoring slightly less on the exam and

exercise scores, math should not have to be pre-required for introductory computer

science. The reverse might also be just as important. Since learning computer

programming improves math skills (Wieschenberg, 1999), students should be encouraged

to take introductory programming in preparation for more advanced math classes.

Students in the low math group depended more highly on the use of hints. It might be

worthwhile to try defining hint usage according to pre-determined math experience. In

other words, students in the low math experience group might be encouraged to use hints

with little or no penalty.

Similar to the use of hints, students in the low math group completed fewer optional

exercises. It seems practical that students in the high math group, like those in the high

self-regulation group, should be provided optional exercises as enrichment. Because

students of all math experience scores were able to perform adequately on exercise and

exam scores, students of all backgrounds and interests should be encouraged to study

computer science not for the purpose of learning programming, but for developing

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

problem solving skills which are vital for success in other subject areas and life in general

(Casey, 1997).

Computer Experience and Student Performance

In general, students in the high computer experience group outperformed those in the

low score group in most performance measures including less dependence on hints, fewer

number of attempts required to complete required and optional exercises, and higher

exercise and exam scores. It appears from these findings that students with computer

experience might be more likely to jump to the exercises with less attention paid to in-

text worked examples. This behavior provides evidence of the importance of research

that suggests worked examples most closely related to the exercise should be developed

and directly paired with that exercise (Paas, 1992).

Similar to self-regulation and math, students in the high math experience group

required the use of hints in fewer exercises and used a lower hint level on the average. It

follows that students in the low computer group might be allowed to use hints with a

reduced or eliminated penalty, or that in-exercise hints could be designed to more closely

resemble the paired exercise for those students. Similarly, high score group computer

experience students outperformed low score group students in all measures of optional

exercise use, but not as dramatically as those in the high math group. It appears that

students with a stronger computer background might not necessarily excel in the use of

enrichment activities.

Students in both low and high scoring computer experience groups were very close in

their average scores on exercises and the exam. These findings indicate that students with

less computer experience might be able to succeed almost equally as well as those in the

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

high experience group in learning introductory programming in CS Online. The findings

also reinforce that students can succeed and should be encouraged to study computer

science for the many benefits it offers.

Common Mistakes made while Solving Computer Programming Exercises

Writing a computer program is quite similar to writing an essay or a report; the

revision process involves proofreading, isolating and correcting errors, and then

observing for correctness and formatting. The cycle might need to be repeated many

times before the product is complete or sufficiently ready for approval or grading. In the

case of the pilot study, students weren’t required to perfect programs, but to make them

work according to requirements at a sufficient level of development effort. The result of

their work was a compilation of thousands of source code samples that could be

compared and analyzed to gain insight into how the students solved programming

problems. The analysis led to an understanding of the common mistakes made in the

process.

Findings from the pilot study imply that students tended to err on the side of syntax,

logic, and grammar, in that order. For syntax, it appears that instructional methods

similar to those used to teach written language constructs could be applied to help reduce

error frequency. With fewer syntax errors, students could direct more attention toward

higher-level problem solving efforts. Students should use a good debugging tool to help

recognize and correct syntax errors while program lines are being typed. By tracing a

program line-by-line, the debugger is also the best tool to isolate and correct logic errors.

The importance of learning a debugger cannot be over-emphasized; it is the best tool for

observing the inner-workings of a computer program. In addition to the debugger,

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

students should be instructed how to embed extra test code into their programs as a

second tier of debugging capability. Embedded code can display extra information or

perform intermediate calculations between lines where errors are believed to exist. In

summary, instructional strategies should include use of a debugger, embedded test code,

and debugging skills.

Students should become familiar with the programming environment from the very

beginning of the learning experience. Lack of familiarity with the environment will not

only lead to more errors, but also to increased inability to trap and eliminate errors

efficiently. In the CS Online learning environment, all activities took place in a browser

where programs were run when a web form button was clicked. Lack of familiarity with

web forms and objects might have contributed to many unnecessary multiple runs.

Students should also be encouraged to run, re-run, and trace their programs to see where

improvements can be made. In the case of an online environment, instructional modules

should provide students with a clear description of the how the interface is to be properly

used.

Students worked hard to solve problems as evidenced by the rate at which they built

their code and the number of sudden changes to hints, worked examples, and previously

run code. These findings imply that students should be instructed when and how to start

over. To be more specific, there might be ways students can learn to gracefully turn

away from the current wrong path and start over in a different direction.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part 2: Implications for Practice

Implications for Computer Science Teachers

When used in a traditional classroom or as an online course, CS Online becomes a

dynamic textbook, the development environment, and the classroom manager. As a

dynamic textbook, material in chapter sections can be used to prepare lesson plans,

presentations, and demonstrations. Through demonstration, teachers can trace and

amplify worked examples to provide further clarification of concepts. As the

development environment, students can run programs from classroom computers with

access to the Internet or from home. As a management tool, the difficulties normally

associated with managing student work are handled by the system.

With cumbersome management issues set aside, teachers can focus more clearly on

the important aspects of teaching and learning computer science. Beginning with self­

regulation, the study showed that, in general, students in the high planning, effort, and

self-efficacy score groups outperformed their low score group counterparts. Thus,

teachers should consider teaching planning skills according to research-based

methodologies (Bayman & Mayer, 1988; Dalbey & Linn, 1985; Goktepe, 1985;

Hancock, 1988; Kurland, 1984; McCoy, 1990). Because planning takes times, teachers

should not expect students to complete as many exercises, although higher performance

on scores, fewer attempts, and less dependence on hints can be expected, especially when

the task difficulty increases.

Motivation (effort and self-efficacy) was also seen to be an important individual

characteristic in the study. Students in the high motivation groups not only outperformed

low score group students, they also excelled in completing additional, non-required work.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CS Online content appears to be inherently motivational, designed to interest all students

including those who lack intrinsic motivation. This is evidenced by a high number of

completed exercises in both low and high effort groups. In addition, by permitting

students to work at their own pace through the content from the classroom or from home,

learning becomes individualized, and students take more responsibility for their learning.

Flexibility in this type of learning can be very motivational in itself (Martin, 1997).

The various forms of worked examples including in-text, in-exercise, and hints were

valuable tools during the learning process in the current study. This was evidenced by

reliance on worked examples by students of various experiences. Teachers should

encourage the use of hints for students with low math and computer skills and the less

motivated, but should discourage their use for those with more experience. This can be

accomplished through the use of a penalty disincentive or through a Version 2.0 feature

that will allow teachers to enable or disable hints for each student.

Knowing the types of mistakes students most commonly made during the pilot study,

teachers can prevent many of those mistakes by finding ways to emphasize language

syntax and good logic. By reducing time wasted by inefficient debugging methods,

students can move forward at a more rapid pace, keeping them motivated and interested

in learning the next topic.

Implications for Decision Makers

Evidenced by findings from the current study, students with a wide range of math

experience, computer experience, and self-regulatory skills can succeed in introductory

computer science. The study showed that students in the low score groups for math

experience, computer experience, and self-regulation performed only marginally below

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the high score group students; indicating that enough time through self-paced study can

lead to success. The increasingly esoteric nature of AP computer science and emphasis on

Java will only serve to alienate more students, giving them incentive to favor less

academic technology education courses. Introductory computer science should be

promoted to students of all ages as an academic subject for the myriad cognitive benefits

it provides, and the transfer of these skills into all other academic areas of study (Casey,

1997; Goldenson, 1996).

Part 3: Implications for Research

CS Online creates opportunity for research because of the vast amount of data it

generates while students engage in learning activities. In addition, any number of

questionnaires can be designed and placed for students to complete at designated times

such as at the next login, the beginning of a chapter, or following completion of all

required exercises in a section. The goal of this section is to provide an overview of the

types of research that can be conducted in light of findings from the pilot study and data

generation capabilities inherent in CS Online. The section begins with self-regulation

and follows with math experience, computer experience, and then general research

possibilities.

Implications for Research on Self-Regulation and CS Online

Findings from the pilot study reinforced research that shows students who were

highly self-regulated established high academic goals and achieved at a higher level

(Schraw, 1998). Anticipating the importance of self-regulation in online learning, more

can be done to further understand how this individual characteristic affects student

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

learning when controlling for math and computer experience. To begin, the pilot study

recorded various student interactions with worked examples including the number of

visits per exercise. The system did not, however, record how those worked examples

were modified or amplified before each run. By adding a feature to collect this

information, further research can reveal the importance of worked examples and their

design for various types of self-regulated learners. Research could also determine the

sequence of worked example use, or the order in which worked examples were visited

with respect to submitted attempts. Patterns of worked example use might predict

performance factors such as the average number of attempts required or average score. In

addition, because hints in the pilot study were a type of worked example that resulted in a

penalty for use, future research could explore the effects self-regulation might have on

hint usage without a penalty.

In the areas of performance on exercises and the exam, future research on the

completion of optional exercises might investigate the dependence on worked examples

and the use of hints. In other words, how much more do students depend on worked

examples and hints when solving enrichment or optional exercises - or how hard do they

try knowing the non-essential nature of the work? Qualitative studies might examine

possible ways of delivering self-regulation study skills instruction in the context of CS

Online. And future research could also examine trends more closely to try to find

relationships between components of self-regulation, increasing task difficulty, and

reliance on help to solve problems.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Implications for Research on Math and Computer Experience and CS Online

Research has established that experience in computer programming leads to increased

achievement in mathematics (McCoy, 1988; McCoy & Dodl, 1989; Oprea, 1988). To be

sure, future research might investigate the relationship between students having

completed introductory computer programming and performance in Algebra and other

math-related subjects. If introductory programming is offered to early middle school

grades, then a higher success rate in 8th grade algebra might result. Future research might

also compare the effects of reducing or eliminating penalties for hint usage for low math

and computer experience students only, giving them additional opportunity to succeed

among higher achieving students. In addition, research might explore the relationship

between self-regulation, math experience, and student performance in completing

optional exercises. Since these two measures appeared to be related, which is more

significant in contributing to the achievement effect? More research might explore the

relationship between math experience, computer experience, and inverse dependence on

in-text and in-exercise worked examples. In other words, why do students with math

experience rely more heavily on in-text worked examples while students with computer

experience rely more on in-exercise worked examples? Findings from this research can

explain worked example types that benefit students of various backgrounds, especially in

a highly constructivist learning environment (Williams & Hmelo, 1998). Future research

might also explore the relationship between specific math and computer experiences and

less dependence on hint usage. More specifically, which math and computer experiences

have the greatest effect on hint usage in learning introductory programming? Finally,

future research might explore the relationship between computer experience, math

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

experience, and student performance in completing optional exercises. Since

mathematics and computer programming involve similar processes (Wieschenberg,

1999), which contributes more significantly toward logical reasoning, inductive,

deductive reasoning?

Implications for Research on Common Mistakes Students Made

The debugging process is one that is of considerable importance to learning

programming. Although debugger use was not a topic of the CS Online pilot study, future

research could explore the use of debuggers in instructional design. More specifically,

how can debuggers be designed to be as instructionally viable as they are practical? In

addition, future research can explore the comparative effects of development

environment on students’ ability to efficiently grasp and applying programming concepts.

In other words, are there any benefits or detriments to using a web-based learning

environment over traditional software development tools? Finally, research into when

and why students quit and start over might inform improved instructional design tactics

to help students avoid programming themselves into dead-ends. Finally, research can also

attempt to identify relationships between worked example design and placement within

instructional modules, and effects on sudden changes to source code.

In general, future studies could explore the amount of time expended between

successive program runs, and first and final submittals for all exercises. In other words,

research should seek to find if there is a relationship between the amount of time taken to

complete an exercise and performance measures used in the present study. Additional

research could also investigate whether time constraints imposed on chapter sections

might impact student performance factors, or whether self-regulatory skills would play a

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

more significant role. If more sophisticated code comparison tools were available, future

research might also determine more accurately the nature of differences between runs -

which would lend clearer insight into the steps students take while solving programming

problems. Finally, research can determine how well students can transition from

JavaScript to Java as they program from introductory to advanced computer science

study.

Part 4: The Efficacy of CS Online as an Instructional Environment

The CS Online pilot study provided insights into how students learn introductory

computer programming concepts in the context of a new learning environment. Advances

in technology, more specifically Web-based applications, have made it possible to not

only deliver educational opportunities to a wider array of learners, but to observe learning

in ways previously not possible. New understanding gained through data collection and

observation can help inform the educational community by making recommendations for

improved instructional practices and design.

Self-regulation was chosen as a measure for observation because of its anticipated

importance for learners in online settings. In addition, it was hoped that the pilot study

would uncover new evidence into how self-regulation affects learners in various ways,

especially in a Web-based environment where little is known about how this individual

characteristic affects learning (Hartley & Bendixen, 2000). It was discovered that self­

regulation played an important role in student performance in CS Online, mainly in the

areas of motivation and planning.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Findings from the pilot study amplify the importance of well-designed worked

examples of various types, including hints at all levels, in-text examples, and in-exercise

examples to help those who are weak in planning and less motivated. In-exercise

examples should be designed to more closely match the exercises they support. Hints

and in-exercise examples can remain as they were since a closely matched in-exercise

example might negate the importance of the hint. In other words, if an in-exercise worked

example is nearly identical to the paired exercise, why would hints be needed at all?

Students completed, on the average, 29.4 out of 45 possible exercises, or 67% of

available exercises. Compared to low score group students, students in the high math

group completed 3 additional exercises, those in the high computer experience score roup

completed 4 additional exercises, and those in the high effort group completed close to

4.5 additional exercises. Students also earned an average of 9.2 out of 10 possible points

for each exercise completed. The relatively high average score might be attributed to a

lack of time limits imposed on the content, thereby enabling students to take as much

time as needed to get their solutions ready. In summary, while certain individual

characteristics led to better performance, students in low score groups for those

characteristics were still able to successfully learn introductory computer programming

through the use of CS Online. These findings imply that the CS Online model for

introductory computer science can be educationally beneficial to students of with a wide

range of previous experience.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part 5: Limitations of the Study

CS Online was built upon research-based principles to maximize the benefits of what

works for the improvement of computer science instruction, and for further research in

the field of computer science education. As with any software development project, CS

Online is incomplete and has already accumulated a list of new features for version 2.0.

Some of the limitations in the current system translated into limitations for the pilot

study.

To begin, several students suggested that in-exercise examples should more closely

resemble the exercise they’re paired with. The in-exercise examples actually used were

those from section content that were most similar to the exercise. Because hint usage

resulted in a penalty, the students were looking for a cost-free way to get to answers

through a relatively identical paired example. Second, the in-text worked examples that

were provided were the minimum necessary to get the project off the ground in time for

the pilot study. While the multiple examples provide in each section were sufficient for

instruction (Reed & Bolstad, 1991), more examples would only be of greater benefit for

content comprehension. Finally, thirty-six students were not a large enough sample size

to perform inferential tests of data generated by CS Online. Future research could use

data collected to perform tests of this nature from a much larger sample size to provide

insight into relationships between learner characteristics and performance measures.

Another limitation included unlimited time allowed for completing work. Given an

unlimited amount of time to complete exercises in a self-paced environment, problem­

solving performance might have been affected. CS Online provides the ability to impose

time limitations on individual sections and all the exercises therein. A final limitation was

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

use of the Netscape Navigator 7.0 debugger to debug and fix programming errors.

Although the debugger was sufficient for the current study, better debuggers like the

Microsoft Script Debugger might have an effect on better debugging and ultimately

problem solving.

With regard to common mistakes made by students, many changes to source code

were unknowable because of the complexities inherent in programming languages and

the many ways mistakes can be made. Because of this complexity, limits had to be placed

on the types of mistakes to look for, thereby limiting the major and minor domains that

emerged.

Part 6: Concluding Remarks

The CS Online pilot study showed that students of various self-regulatory skills, math

experiences, and computer backgrounds could succeed in learning introductory computer

programming concepts. Many students of all ages can benefit from computer science

instruction, and introductory courses can be developed to lead the way to motivational

and meaningful learning experiences. These experiences may, in turn, result in increased

enrollments and a renewed interest in this challenging subject.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

EXPANDED TABLE OF CONTENTS, SECTION CONTENT,

EXAMPLES, AND EXERCISES

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Online Course Authoring % Publishing
Teach Students in tie Digital Ape

Home I c h a p te r I Sactro i 1 E»»rclsc» I

Table of Contents
»£haafelLlBfe»i«sttaB
* $&MB$scZLlLQ.miy.t!itMMa
► Sb«g|«rJ.;...gfe.fA
<•SkmSmztkMMmz&xfSBsd.
Object*
<• SwUanrli. tntrodw*lgn..to
.y,s»c:.R.*liDaî feigai
* S3̂ Msn:iiSMMs.iLlsii!,£im
Cfaiartit

® S x ttsn -a ; .Virtual. Pat
SissMlaEaa
Stt<̂on-4> N&tkmai
Identification Cant®?
9 CD EHavof
• S%i3iQo-£; Cateutater

Ctapter-4: User-Defined Objec*s>Sectiat»-2: 8uif«tlm§ Tc

BuBding Your Own Objects

O ther languages handle object construction differently, but th e fundam ental cone
master these concepts throughout the rest o f this chapter, programming in the re
lo t easier, and programming ob jec ts in o ther languages will be easier too.

Creating and using an object is very simple - only a th re e -s te p process.

1. Define the object and it’s properties by writing a c o n s tru c to r fu n c tio n .
2. Oefine the methods for th e o b jec t with sep a ra te functions
3. Create an instance o f the object with new (as you did with pre-defined Jav.

is called instantiation. Whenver an object is instantiated, the properties rec
them in the construc to r function. T hese a known as d e fa u l t p ro p e r tie s .

» Cfea«ri»r-6i Makifaa Pacfstont

» E t o t e g l u a g i M a a l l t e n t a g f l

»flaaitac.tLM»affl8iLIaB{a
► s3Mmz9jJ>ksi3B&ms
» Chatrt8i-*0< W eb Form s and
£u$lmLLn.*gdi>isam,
- £kn>Mm:SM. EtateBat

E x a m p le 1

// Teas first example illustrates the three main steps
// The object is an acoustic guitar with 6 strings, ti
// to use a capo.

// The entire collection of fun ction s between these ts

\ // Step-1. Define the object and it's properties by

function guitar() {
this.strand « *E*j

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O rtif a t C o u r s e A u th o r in g § PubUsliiRiQ/j1 %rTeach Student* in M GNjg&it Age \£f* fiual
i index

Table o f Contents Chapter-4; U ser-D efined O bjects>Section-2: Building ¥o
»simssMzk*
Introduction
* r i B u i ld in g Your Own O bjects
l/Q and
Atacafite o ther languages handle object construction differently, but the fun-darssental concepts rer
* 9 w f t r t l£can m aster these concepts throughout the rest of this chapter, programming in th e rema

^ be a Sot easier, and programming objects in other languages will be easier toe.
- u » -bm&inetitPtoraeia

<* Chapter̂ :
Toffies
* mwmz:2L
s- CH^rvi 'w-
1*1 Wsb
Forms a»d
Cusfe<ym
iatetfaa»
* Chactgf- .UtPrafccte

Creating and using an ooject is vary simple - only a three-step process.

1. Define the abject and it’s properties ay writing a c o n s tru c to r func tion .
2. Define the methods for the object with separate functions
3. Create an instance of the object with new (as you did with pne-defined JavaScript c

is tailed instantiation. Whenver an object Is instantiated, the properties receive the
them in the constructor function. These a known as default properties.

Example 1

/ / T h is f i r s t - estas-p le i l l u s t r a t e s t h e t h r e e m a in s t e p s t o h u
/ / The o b je c t- i s an a t o u s t e r g u a v a r v i t fc t s t r i n g s ,• tw e lv e f
/ / to- u s e s. c a p o .

Web Emo-s

J / s -a ts s 's ra s s -s s s E a a s s s s s a is s s K s s - s s s E a s s - .J s s s a r s a a t s s s E s ts s s s s s e s 's s s s s s s s - s s s s E - s a s s .s s a s s

..*/ The erst ire - c - c l l e c t i o n o f f u n c t i o n s betw een . t h e s e &ko l i n e

/ / S te p —i . D efir.* t h e o b j e c t and i t 5 s p r o p e r t i e s b y u s in g a

fu r .c t ic -o g u i t a r il [
th .e s . s t r a n g l = *2*?
t h i s - s t r i n g S = r3'*
t h i s . , s s r its g S = ' ;
th e s .s o x c .n g 4 = *D* ;
t -h i s . s t r ar.g5 s * 3. ’ .r
t h i s . s t r a r g f - *£V?

/ / S te p —2 . D e f in e t h e a e th o e s f o r t h e o b j e c t u s in g s e p s r a t
STe w i l l s t a r t d e f i n i n g s e th c -d s i t e s a s s p ie -D .

/ / 3t e p -•*. C r e a te .an i n s t a j i c e o f th e o b j e c t ar.d u s e i t in a

Y sr g u i t a r 1 - T-ev g u i t a r O ?
d o c u s e n t . sp r i te ; 1 S t r i n g - ! i s »{«,! ' - g u i t a r ! * s t r i n g 1 * f

d o -ru sss ’s .w r i t e ; ’ S tc c r .g -2 i s a issj ' - g u i t a r ! . s t r in g D t 1 <hz>
d o c u m e n t. w r i t e ! 1 S tz i r -g -2 i s a !.n; ' - g u i t a r ! . s t r i r .g S -f * < b r>
d o cu s ten t .w r i t e ’ 1 S t r i n g - 4 a s sin] 1 - g u i t s r l . s t r a r . g 4 *■ J <fer>

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

do-rujxess .wri-Se I' Sonr-tf-S is a In; ' - g-uitarl .s :r:r.j5 » '

dot-jre.-.i . vtrit-e I ’ St-xir.-;- : i s a r- ' - ju ie a r l . s-snr-g-S - '

Steps 1 and 2 define the object, step 3 is for instantiating and using the object ir a ptog
guitar -object has six properties and no methods {yet}, The properties are string! ... stria
note assigned to the open string. An open string note is what you hear wiier, the string i*
pressing -on any frets.

The word th is refers to tne object itself. In other words, th is - s tr in g l = 'E' car- be -e-ad
this objacr will receive a default value o f tor ever/ instantiation.

Let’s make this object a Mtd« more interesting by adding frets to the guitar, Whenever a
string is plucked, you will hear a higher pitch. For each fret from I to 12, the pitch is ra?s
example, th e open note for string! is IT, but when free 1 is pressed, she cote becomes a
twelve additional notes to each string using an array for each fret value;

Example 2

v-/ This ejtasspie illt-sst-rates tbs -addition o f fret-s t-o the gait-ax object.

,• / The en tire collection. o f functions between these 5 * 0 lines defines the c

,! f ft-ep~i. Define the cb]sci arc; i t ' s properties by iisong a coR4?sac5« fur

function guitar(' {
i-his- - s - z i x q i — new A rra y , ‘ " i ' , 'G \ ■G*',

> C ', '’C#«, *35', • £ •) ;
x h i s . -s ir in g -i = new A r ra y ('S ’ , 'C * , * C | \ 'B » , ' I '# 1 , ' i ' '

’ f \ ' F f , " S ’ , '>5#% 'A ' , ’A#’ , ’3 ') ;
* j i 5 . 31=11-3-J ~ "-W A r r a y { ' S ’ , " A 1, ' A # r

’€# ',■ 15* , *C#»,, ' S ' , * r # ' , ' £ ') ;
“ hi™ . 3~"ir,--T“ — new A r ra y I ' D ' , ' 2 # ' , > £ ' , ' F>, 1F? ' , *G*,

*G#’ , 'A ‘ , 'A # ', . '» * , * C ',* C # % •B ’),-
v-his . e “ xi.ngS = r.-ew A r ra y { 'A S ‘A *’ , * 3 ' , ' C S 'C l* , ’S ' ,

*D#« , ' £ * , ' S ' , ' ’F # ’ , ' S ’ , ■&**. ' A' }
t h i s . 2X = ir.-3-€ — new A rra y C S * , ' ? * , ’ F I '. , ' G ' , ' f f*' , »A' ,

' S ’ , ' C r , !SC | ’ , ' 25' , 'C - f , 'E M j
t-h is . s t s ; = 0;

}

/ / ftep-S. Define -she saethods for the object using separate fnnctie-RS
/ / Sffe*li smarts defi.i3.ing atefcheds in esanple-3.,

/ / Step-3-. Create an issuance of the object and use i r an a program,

vax guitar! “ new guitar •;} ;
vsr fret_nun 5 exosspt *1 Enter a f re t catrJber % ’O6);
fret- R-iir. = fre t rmss. *■ 1;

1 4 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

s r . z . s r i t s : ' Sher. + £r«;_r.';j - * is pressed, z r .e r.c-ss or. n il s-
ee.wrXre 1 Serrr.r-1 is a . e' ’ - r r r o a r l . a m e r l I £rs:_.vJio; - ‘ .dr. * - :
f.-s . wrooe ‘ 1 Jm r.r-1 is a r.. * - g -rlra rl. slrrrgS i ireo_r.ua; - 1 <hr; 1 t ;
r.r . -.cite ‘ ‘ Srrrr.r-X is air.) * -- x i r r a r I . s r :: rr.xS •) f rer_r.ur.; “ ’ < h z > 1) ;

•is x-sr.sr.e . '« i t e : 1 rerrr. j-4 is a . r.: * u g-uitarl .»sriis<j4 Ci=e-s_traa.i - '< br> ');
coc-jsr.es-s. »roSe !1 Ssring-5 is a r. ’ » gurr-arl . sirrr-rS {£r«r_rsre.; - ' - er:- * . .-
■car-rr.er-r .writ* . '3ooir.--c is a • r. ’ a currari . •• ! 't.-> ' .■ ;

W henever you instantiate a new A rrayQ object in JavaScript, you can assign values to t
placing then in pa.rerthesis and separating tnerrs by commas - as shown in the above ex«
th i s .s t r m g l[0 j is assigned the ©pen string note of E', if r is .5 tr in g [l] is assigned at

In exam ple-2, a!i the notes are shown as either natural or sharp. In music, all ro te s c a r
name, For example, D* is the sam e note as Eb. Wnat happens if you want the notes to I
flatted nam es in place of the sharps? We'fi reed to add a method tha t changes the string
flatted note names:

Example 3
.? / This SK-artple i l lu s tr a te s -she addition of sðcds to the gu itar object.

f f The er.$.ire collection of functions between these two lines -defines the z

t / Step-1. Define oat object and it-'* s properties by using a constructor f'u,r

function guitar{’ [
rh rs . rrrrr.g l - r.rw A rrayi’Z’ , *G', 'G * ',1A'.

’ w »'S ', 'C V 'C # \ ‘S ' , "2#1, '£ ’);
vhus. rrrrr.gB = new Azrayt'S’,'C " ,'C * ', 'S ’ , 'S i ', ' S ' .

T ’ , T#*, ’ !S f 'A ' , > » * ,’»*) >
rk is . ssri:ng3 = rest Array ('S ’.»1G#1, * A1,

'B*1,, 'S ’, T ' , ‘E#*, ‘C-’ j ;
•skis. siring-s = new teray f'D S "EV, 'F», ■ r# ',‘G1,

'S# ', 'A ' , •’A*1,, '3«, 'C , ‘C f , 'S ') i
r h r r . rrr-inxS ~ r.r, Array AS ’ A# 1 , ' B 1, * c , 1C#' , 'B ',

' E# ', 'S ’, ’1 F ' , ’•r#’, 'S ', ’!*•, •**) •■
rAiss. 2rrmg?€ - new Array. ' E', 'S ’ , ' F#1, 'G * ', 'A ',

’A#*, '3% , = , f , 'S ’ , ’S i’ , ' Z ") ;
bh&s.£ser - 0*
th is . ch.aageToFlac* s cfcangeloFlars#
th is ..dis.plav^llliotes — dcsolsyiilllSbtesr

\

/ / fte.p-2 . Define the methods for the object asing separate functions
/ / The 1st method changes the property values to contain f la tte d notes
,*/ The 2nd nebbed display a l l notes staring with a ?jses promptsd f re t nursbe

function chsngeToFlacs (\ f
th is . a cringi * 2 * ® th is ...stringi [4] = tJsjbl ; t h i s . s tr in g ! [€' - ffb'*

th is -s tr in g ! £93 = ’ ~b ’ ; thes.. s trin g ! {11] = f Zb1 ?
th is . s cring! '! J s f Fb1 „*■ th is -s tr in g ! [4] = 'Eb‘; th is . s trin g ! [t \ = 1 Gh ■

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

th is - s“rir,.g£ ['51 - 1 Ab1; th is . st:ir.g£ C il] = 12.b'»
th is . stringS i l ' i = th is ..stsingS'[2] - 12b'; t-kis . atzicgS [6.3 “ ' Bb

th is . s trin g * [33 - ' 2b5 thi s * stris,Cf2 C113 = * Sb5 ?
th is . string^ *1; := 12b ’ t hi s . strins4 [4] = 1 £b'; th is . s > z z - n q i i i \ = ' K t ' ;

t.his . 2trin§4 [3] * ' 2b 1; th is .. sttiivg4 111] = 1I'fc ’ ;
th is . stctngt C13 - fBb'; th is ..string?-[43 = 1 Db 1; th is . striccfS l€". - ’ 2c 8

th is . s t r i r . t i [93 - 1 Gb 1 .• th is . stzir-gt [113 = 1 GJs1
th is . s tr in g s*23 ~ "Sfc'x th i s . atrisigo [4 i = th is .. szriivyc [c 3 = f5b‘

th is - strin.gt [51 = ' l b ' ; th is . strisigo [11] = 12b5 ,•

•farctioa d i s s l a y & l ; r rs t^ s ta r t ! t
•dcciiisent - v r ite s Sztrt-r.g frer, t r e t - r • £ret_st-s.rt -

% a ll nates or, strings 6 5 4 3 2 1 are:
<br;>1 ; ;
for { v & z i s £ re t_ sta rt; i <- 12; i>-H [

docta.e?..t.writ* 3 ’ ? re t- * r i 4- *: ’ ■* th is . string^ li j +
docass.es.'s .writ* 'th is . strir.gS [i3 + • ::) ;
de-ra»eR.t .write 3 th is .s i r ir.gi [i ’ * r c) t
document.writs 3t-hi.s-.strir.g3Ii I + ’ *!;
docassesit. vrite-It-his .sfcriR.g£ [ij * p *?;
docas’.ea.t .write "this, s tr ia g l £1' + ’ *);
dotas.eat .w rite 31
 ’ 3 i

\
docitsBffnt .write s' ’
 ' 3 ;

}

/ / 5 tep-2 . Create an ia.»t.ar»re of the -tfc^ect and care i t ir. a crogrs

vsr m iitarl = tew ru i ta r l) ;
var g ti.ta rl = new gu itar 3) ?
var .i.ret_auja - troscpt ; 1 Sr.t-er a f re t autsber { 3:-11 ’ : , f , 0*3'#l;

g u i t - a r l . 4 i a p l a y & 2 l o o s e s I £ reb _ rra:R } ?
•juitarC .rha.i5geCc?lats {) ;
■guitar 2 .dispIayAIl&otes (£ret_nutft‘ *

The above example requires some explanation:

• Methods are listed in the constrcctor function along with the properties. Whenever yoi
th is .m e th o d N am e, methodName is what youll us* to run the method. You can use an*
calling method name. To the right of the '=" sign is the actual function nam e used to def
actual function nam es must match.

this.changeToFfats = changeToflats;
this.dlsplayAESftiotes = siisplayAEiNetes;

» In the changeToFlatsf) methods, notice how on#y the properties tha t need to be chant
the nature,' notes {with n© sharps) are I art a<one. The word th is references the origins p
constructor function - so you're changing the actual property value even though the cod

this, string 1 [2] = 'Gb';

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

« func tion d isp lay A iiN o t«s{ fr« t_ start) { Not ice w a t a param eter is used ir thi* me
Is that tne variable and value of fre t_ n u m are defined outside of the method definition,
an argum ent to th e method in order to oreservs the method's independence from t i e er
v.-crds, 'if the entire object was copied and pasted into someone e h e ’s program, al! they
the param eter list and what values the param eters are expecting. For example, if the pa
then th e method would re fu se the new programmer (who copied the object) to use the
th e caS.ing program. It is ba tter to preserve re-useabiTty by making objects independent

function dtsplayAllNotesQ {
doctim etit.w rite(*Starting from fre t- ' + fret_num +

* Not:ce tha t two instances oc the guitar object were created and used in oils program -
the other for Pat notes, You car create and use as many instances of an object as your ;

This last examp'e illustrates the benefits o* using a visua' Interface wfw your sragram s, >
to your program, HTML forms can be used to provide you (the user}, with graate'-eo'iB-el
runs. The use of interfaces w'nl be covered in Chapter-5 so, for now, ju s t run- the exempli
interface, a program nuns from top to bottom - line by line. With a visua, mterface, you k
when the program runs.

Example 4

•;chx»I>
<hesd>

l i t a r Cbj e rt Inter£sce</,5itle>

<5cript>
/ / This esEaspCe i l lu s tr a te s the o.s* of an in terface t© the gu itar object.

/ = 3 E 3 ss :ss :3 s3 E 3 y s» as3 ssE = sr3 tssssss :sssE sss3 r= ts-s :sK = :s:sts t= a s3 := 3 := js3 := ss5 S K S srK = a:sK S ss:;= sssjs= sr3 S = 5 sss:ssc3 :

/ / The en tire collection of functions between. these two lin e s defines the c

/ / Srep-i. Tefire- the object- and it- * s properti.es- b y using a constructor tux

function guitarO {
sirrrtafl - r.a>- Array•13 ' , 'F% 'F t ', ' G * ' G#' , ’A’ .
’At", '5 ’ .. 'C ', '■c#*, ’E#< . 'EM
s-rir,g2 = Eew Array ’ 3' 'C , >Cf, ■B",
’ r ' , “Ff *, 'S ’ , ' 'A ', :'A# ', 'E ' l ;
s ir in g 3 ~ saw Array• 'A ' G#1 , 'A '»'A # ', ' S ' , • c .
’c#’, ' 5 ‘, •:#>,. '£ \ ' F#*, -S")»
i i r i r . f i = r.e-.t Array ('BJ' , '3 * ', "E ’G",
£#', ’A’, 'A#',. '3% 'C , ' E#', ' 3 3>
sirrr.y j = new Array• 'A ', 'A#', ’S’, rC’, ’C#\ >r,%

T ’, ‘’F f’, 'S ’ , '3#’, 'A ') ;
s ir ir .f l = new Array•’3 ', T ’, ’F#', 'S ’ ,>S#\ 'A ',
•A#*, '5 ' , ’C , 1'« > » 'S ’, '

th is .f r e t = 0;
th is . changeToflats = ch.angeToFlars..'
th is . d i s p I a. y K 12 IT & re « = d i s- p 1 ayis. 11K a t e s ;

.‘/ ftep-2. Ter ire the methods fox the object using 5epa.rs.te functions

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//' The le t ^.eth-td charges she property vaitaea sc rm eair classed -noses
/ / The 2nd netkod display a l l noses soaring wish a user prompted f re t rxvrjce

function th.sr.geTc Fiat a {5 (
thcs . s tring !] 2] 3 *'Gb1 ■■ th i s .. a t-r i r. gl [4.1 3 1 K o ' t h i s .s tr in g !£ €] ,= ‘rb-

th i s . s tr in g ! [5] 3 ■Cb* ; t h i s . s tr in g ! [11] St ‘ Z h 1
chi s . s sr a ng£ 121 3 r' Eb1; th i s ..s tr in g ! [4] 3 ‘ Zh 1 ; th is .s t r in g ! £6] 3 'Gfc:;

th is .s tr in g ! 193 3 1 ftb1 ; thi.2 . s tring! CXI] = ■ Eb * ;
th is . ss.rc.ng3 £1] 3 ®Abs.; t h i s .. s trin g * {1] 3 15b11 ; t h i s . s trin g ^ (c£ 3 (I t '

t h i s .s tringS [5] 3 1 Zb1 ; this-. stringS £ 11] = 1 C-fc!
th i s . srring4-[1} 3 ii£b,! j t h i s .. soring1* [4] 3 1 Gb 1 r t-hi.a .. a ir ing4 [t] 3 ?hb (

th is .. string^ if] = ‘ 2b1 ; t h i s . sbrirg4£11] St ‘ Sb1 ?
th i s . string-5]i] 3 c3b *; th is .s tr in g o [4] 3 1Tb 1 i th is .s tr in g S £6] 3 'Sbfl

t h i s . atringS[5] 3 1 Gb! / th i s . s trin g o £11] = ‘ K t 1 ;
th is . st.ringf £2* 3 "<Sb’; th is .striag-c [4] 3 VfiJb11 ; th is . strir.g f £ 6] s= 1 >b'

th is .s tr in g 6[S] = ‘ Cb ‘ ; t h i s , s tr in g fI11] s ’Sfc' ?
I

ratct-ion dasplay&lIKoses ■; rxei__starh; |
dacaaenb .write (” Ssartir.f £rc-», f res - r - frer__2-sart -

a ll noses or. strings 6 5 4 * 2 1 are:

 ’ ; ;
sc-r t -v&s i 3 fre r—s ta r t ; i <= 1 Z i a++.l i

docyaB.ens .write i ’ Fret- 1 - a -r * : ' v t h i s .s t t in g f ! i j +■ * '
dc?rus.ent .v r i t e : t h i s , s t r i n g s I I ! + f • •) ;
docaasens. write (Shis. string^[aI + r * j ;
decuss&st. write ;th is .s tr in g s [i- +■ r
document ,»rz ise 'sa ls ..string! £i] * f *) ;
docssiezit . wx ite •: th is . s tr in g ! £ j. £ -f * ■'■) ;
document .write ; '
 ’} ;

}

dc-cca&ent. write. (5 <;br> * ' ?

.!
/_,> ssssss&sssssBszBssssssssBssxsBsssssssssssssssssssssssssssssssasBsssssas

/ / Step—S. Create an instance of she object and use it- ia a. pxograw..

function ronPrograau i {

var gu.it a si 3 new guitar u ;

var -fret^ciua = docuaaent. guitarForra... tsssFret .value4! ;■
var r.cse^sype - document .guit.arFcr:n..rsdl'ohea { i}. checked;

i f .(r.cte^cyps) (
g u ita r ! .tb.sogeToFla.tsi • r

\
guctar 1. dis-playJLllHotes [frs t_ s’aa};

1
</scrips>

<seta http-e«uiv~*Content- Type' c on tens—f text /htsc.1; char set3! s o -S£ -5- 5 -14 >
</head>

<£ors sases'ftitarfaisn* seethed3 ‘post ■ s.ctien3? f >
<table width- 1 -32% 1 border3 11 ‘ >

< tr bgcoior**#$35 9CC *>
<td colspan3 ’ 3 * >

Cdiv align3 ! cen terf X font face3 *Verdana, . t r ia l» Helvetica, sars-ses
<fens color3 1IFFFFFF’ >Guisar

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Object **ith In.terfa.ce;:sr>
</£cnt><;.''b>-<:rost- c c ltr3 * #rrTFFF1 > ; enter a f re t suarber 1 - il , clic'f
type c£ ro tes, then click Sue.! C-f cr.c>-‘ font -;cXc-zsf f5r.FFFFf>

<:; f or t > c /b></ font> </div>
X' /cd>

</tr>
<tr>

•ctd *fidrk3< 35% fc >
<civ align— ’ r ig h t9 x f c tc race- ’Verdana* A risl, Helvetica, sa ts -se ri

</fcnt>
< input- type3 * case- 9 naite—‘ txt-Fret-* value3 1 09 s i 2 es , S' ms3s.lergth3 'e t

</div>
</edi­
cts* sridtb=*2S%*>

<input cvp-e3-* radi-c-5 r.as«= - radKoces ” value3 * sharp 1 checked:*
cic-ns £.&*:«='’Verdana, kria.1, Helvetica, ;ar.!-;«z_: ’ sise=?l T>.sksrp <
<:font face3 ’ Verdar.a,, «_r i a 1 s- Helvetica, sans-serif ' s i te 3' 2 ’ >

<input type3 r radic-' case5 f r-adheres * value3’ f l a t f >■
•“fo n t face3 5Verdana, JLrial, Helvetica, 5ar.s-se.nf s ise 31 2 , >Flst< --i
< / f one >< ;•' td>

<td width3* 33V >
<input type3 * but ten ’ usae3 ’ ruraxatcpie* value3 ’ Hun ' c-n.01.ick3® rurFrec

</td>
</tr>

c/table>
<p> </p>
xpxfoct face3 ’Verdana, * .rialf Helvetica, sa n s-se rif’ s ise3" 2 ’’ > </£ont-> <

< ;■ feci/

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

t h r e e h in t l e v e l s a n d t h e e x e r c is e s o l u t io n e x a m p l e

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// Solution
// Predict which rodeo rider will have the best time
/ /

function avg_5(nl,n2,n3,n4,n5) {
// The n 's are the numbers to be averaged
return (nl + n2 + n3 + n4 + n5)/5;

}

function predict(XI,X2,X3,X4,X5,X ,Y1,Y2,Y3,Y4,Y5) {

var sum_XY = 0;
var sum_X2 = 0;
var avg_X = 0;
var avg__Y = 0 ;
var a = 0 ;
var b = 0;
var n = 5;
var Tx = 0;

sum XY = (X1*Y1) + (X2 *Y2) + (X3 *Y3) + (X4*Y4)
sum_X2 = Math.pow(XI,2) + Math.pow(X2,2) + Math.pow(X3,2)

Math.pow(X4,2) + Math.pow(X5,2);
avg_X = avg_5(XI,X2,X3,X4,X5);
avg_Y = avg_5(Y1, Y2 , Y3 , Y4 , Y5);
b = (sum_XY - n*avg_X*avg_Y)/ (sum_X2 - n*Math.pow(avg_X,2))
a = avg_Y - b * avg_X;

Tx = a + b*X;
return Tx;

}

var dave_time = predict(1,2,3,4,5,6,24.8,29.2,31.4,27.6,35.1);
var don_time = predict(1,2,3,4, 5,6, 27.8 , 31.5 , 26 . 3 , 30.2 , 29.9) ;
var randy_time = predict(1,2,3,4,5, 6,30.4,24.6,27.2,24 . 8,30.6) ;

document.write(1 It is predicted that Dave\'s time will be ' +
dave_time + ' seconds<brxbr> ') ;
document.write('It is predicted that Don\'s time will be ' +
don_time + ' seconds<brxbr> ') ;
document.write('It is predicted that Randy\'s time will be '
randy_time + ' seconds<brxbr> ') ;

// Hint-1
// Predict which rodeo rider will have the best time
/ /
// Pseudocode description of the solution

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

/ /
// (1) Copy and paste the avg_5() function
// (2) Copy and paste the predict() function
// (3) Define variables for dave, don, an randy's times.
// (4) Assign the results of function calls to predict() to the three
variables.
// Be sure to pass appropriate argument values to the expected
function parameters.
// (5) Output the three scores using document.write()

// Hint-2
// Predict which rodeo rider will have the best time
/ /

function avg_5(nl,n2,n3,n4,n5) {
// The n's are the numbers to be averaged
return (nl + n2 + n3 + n4 + n5)/5;

}

function predict(XI,X2,X3,X4,X5,X,Y1,Y2,Y3,Y4,Y5) {

var sum_XY = 0;
var sum_X2 = 0;
var avg_X = 0;
var avg_Y = 0;
var a = 0,
var b = 0
var n = 5
var Tx = 0;

SUm_XY = (X1*Y1) + (X2*Y2) + (X3*Y3) + (X4*Y4) + (X5*Y5);
sum_X2 = Math.pow(XI,2) + Math.pow(X2,2) + Math.pow(X3,2)

Math.pow(X4,2) + Math.pow(X5,2);
avg_X = avg_5(X1,X2,X3,X4,X5);
avg_Y = avg_5(Y1,Y2 , Y3,Y4,Y5) ;
b = (sum_XY - n * avg_X * avg_Y) / (sum_X2 - n*Math. pow (avg_X, 2)) ,-
a = avg_Y - b*avg_X;

Tx = a + b*X;
return Tx;

var dave_time = predict (?) ;
var don_time = ?;

document.write(1 It is predicted that Dave\'s time will be 1
1 seconds<brxbr> ') ;

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

// Hint-3
// Predict which rodeo rider will have the best time
/ /

function avg_5(nl,n2,n3,n4,n5) {
// The n 1s are the numbers to be averaged
return (nl + n2 + n3 + n4 + n5)/5;

}

function predict(XI,X2,X3,X4,X5,X,Y1,Y2,Y3,Y4,Y5) {

var SUm_XY = 0;
var SUm_X2 = 0;
var avg_X = 0;
var avg_Y = 0;
var a = 0 ;
var b = 0;
var n = 5;
var Tx = 0;

sum XY = (X1*Y1) + (X2*Y2) + (X3*Y3) + (X4*Y4)
sum_X2 = Math.pow(XI,2) + Math.pow(X2,2) + Math.pow(X3,2)

Math.pow(X4,2) + Math.pow(X5,2);
avg_X = avg_5(XI,X2,X3,X4,X5);
avg_Y = avg_5(Y1,Y2,Y3,Y4,Y5);
b = (sum_XY - n*avg_X*avg_Y)/ (sum_X2 - n*Math.pow(avg_X,2))
a = avg_Y - b*avg_X;

Tx = a + b*X;
return Tx;

}

var dave_time = predict(1,2,3,?,?,?,24.8,29.2,31.4,?,?);
var don_time = ?;
var randy_time = ? ,-

document.write('It is predicted that Dave\'s time will be ' +
dave_time + ' seconds<brxbr> ') ;

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C

QUESTIONNAIRES USED IN THE PRESENT STUDY

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Directions: A number of statements which people have used to describe their computer
programming experience and ability are given below. Read each statement and indicate how you
generally think or feel by clicking the appropriate button (online questionnaire). There are no right
or wrong answers. Do not spend too much time on any one statement.

Computer Experience and Ability Questionnaire1

1. I know how to type without looking at my hands. (Yes, No)
2. I understand the basics about how to use the computer including how to power-

up, shut-down, the mouse, and the keyboard. (Yes, No)
3. I have taken and completed a Computer Expectations or Computer Literacy

class in the past. (Yes, No)
4. If you completed a Computer Expectations or Computer Literacy class in the

past, what was your grade? (A, B, C, D or below)
5. I am comfortable using the computer to do school work. (Yes, No)
6. I have used HTML. (Yes, No)
7. I can use HTML to create a web page. (Yes, No)
8. HTML is easy for me. (Yes, No)
9. I have used Visual Basic. (Yes, No)
10.1 have used Visual Basic to create a computer program. (Yes, No)
11. Visual Basic is easy for me. (Yes, No)
12.1 have used JavaScript. (Yes, No)
13.1 have used JavaScript to create a computer program. (Yes, No)
14. JavaScript is easy for me. (Yes, No)

1 (Hong & Halopoff, 2003)

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Directions: A number of statements which people have used to describe their math experience
and ability are given below. Read each statement and indicate how you generally think or feel by
clicking the appropriate button (online questionnaire). There are no right or wrong answers. Do
not spend too much time on any one statement.

Math Experience and Ability Questionnaire2

1. I have taken and completed Math Applications in the past. (Yes, No)
2. If you completed Math Applications in the past, what was your grade? (A, B, C,

D or below)
3. I have taken and completed Pre-Algebra in the past. (Yes, No)
4. If you completed Pre-Algebra in the past, what was your grade? (A, B, C, D or

below)
5. I have taken and completed Algebra I in the past. (Yes, No)
6. If you completed Algebra I in the past, what was your grade? (A, B, C, D or

below)
7. I have taken and completed Algebra II in the past. (Yes, No)
8. If you answered ‘Yes’ to the previous question, what was your grade? (A, B, C,

D or below)
9. I have taken and completed Geometry in the past. (Yes, No)
10. If you completed Geometry in the past, what was your grade? (A, B, C, D or

below)
11.1 have taken and completed Algebra II in the past. (Yes, No)
12. If you completed Algebra II in the past, what was your grade? (A, B, C, D or

below)
13.1 have taken and completed Pre-Calculus in the past. (Yes, No)
14. If you completed Pre-Calculus in the past, what was your grade? (A, B, C, D or

below)
15.1 have taken and completed Advanced Placement Calculus in the past. (Yes,

No)
16. If you completed Advanced Placement Calculus in the past, what was your

grade? (A, B, C, D or below)
17.1 have taken and completed Trigonometry in the past. (Yes, No)
18. If you completed Trigonometry in the past, what was your grade? (A, B, C, D or

below)
19.1 have taken and completed Advanced Placement Statistics in the past. (Yes,

No)
20. If you completed Advanced Placement Statistics in the past, what was your

grade? (A, B, C, D or below)

2 (Hong, 2003)

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Self-Assessment Questionnaire3

Directions: A number of statements which people have used to describe themselves are given
below. Read each statement and indicate how you thought or felt by circling 1, 2, 3, or 4 that best
describes your mind. There are no right or wrong answers. Do not spend too much time on any one
statement. (1 = Not at all, 2 = Somewhat, 3 = Moderately so, 4 = Very much so)

Not at
all

Some­
what

Modera­
tely so

Very
much so

1 I determined how to solve the problem before I
began.

1 2 3 4

2 I checked my work while I was doing it. 1 2 3 4
3 I worked as hard as possible on ail exercise

items.
1 2 3 4

4 Considering the difficulty of the items, I
think I did well on the exercise.

1 2 3 4

5 Thinking about my grade in the course
interfered with my work on the exercise items.

1 2 3 4

6 Compared to other subjects, this exercise
was difficult.

1 2 3 4

7 It is important for me to do well on the
exercise item.

1 2 3 4

8 I tried to understand the goal of the exercise
questions before I attempted to answer.

1 2 3 4

9 I judged the correctness of my work. 1 2 3 4
10 I concentrated fully when I was doing the

exercise items.
1 2 3 4

11 I think I did a good job on the exercise items. 1 2 3 4
12 Thoughts of doing poorly interfered with my

concentration on the exercise items.
1 2 3 4

13 This exercise was easy for me. 1 2 3 4
14 I think the exercise items are useful for me to

learn.
1 2 3 4

15 I carefully planned my course of action before I
solved problems.

1 2 3 4

16 I checked how well I was doing when I was
solving the exercise items.

1 2 3 4

17 I put forth my best effort on all exercise items. 1 2 3 4
18 I think I will receive a good score on the

exercise.
1 2 3 4

19 During the exercise, I though about the
consequences of failing.

1 2 3 4

20 This exercise was a difficult one for me. 1 2 3 4
21 Understanding the content of the exercise is

important to me.
1 2 3 4

22 I thought through the steps in my mind before I
attempted to solve the exercise items.

1 2 3 4

23 I asked myself questions to stay on track as I
did the exercise items.

1 2 3 4

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24 I kept working even on difficult exercise items. 1 2 3 4
25 I understood the content of the exercise

items quite well.
1 2 3 4

26 During the exercise, I got so nervous I forgot
the information that I really knew.

1 2 3 4

27 Since I understood the material well, this
exercise was easy for me.

1 2 3 4

28 Getting a good grade in this exercise is
important for me.

1 2 3 4

29 I asked myself questions about what the
problem required me to do before I did it.

1 2 3 4

30 As I proceeded through the exercise items, I
asked myself how well I was doing.

1 2 3 4

31 I didn't give up even if the problems were hard. 2 3 4
32 I think I did well on the exercise items. 2 3 4
33 I tried to determine what the exercise items

required.
1 2 3 4

34 I checked the accuracy as I progressed
through the exercise items.

1 2 3 4

35 I worked hard to do well on all exercise items. 1 2 3 4
36 Even when the questions were difficult, I

knew I could succeed.
1 2 3 4

3 (Hong, 2001b)

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX D

SOURCE CODE COMPARISON SAMPLE

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

First Run

var sentence = 'The skies in Montana are big.';
var sentence_length = 0;
var reversed_sentence = 'big very are Montana in skies The';
var sentence_array = new ArrayQ;

sentence = prompt('Enter any sentence:',
'One ring to rule them all, one ring to find them...');
sentencelength = sentence.length;

sentencearray = sentence. split('');
sentence_array.reverse();
for (i = 0; i < sentence_array. length; i++) {

reversed sentence += sentence_array[i] + '';
}

document.write(sentence + '<brxbr>');
document.write(reversedsentence);

Second Run

var sentence = 'The skies in Montana are big.';
var sentence_length = 0;
var reversed_sentence = 'big very are Montana in skies The';
var sentence array = new Array();

sentence = prompt('Enter any sentence:',
'The skies in Montana are very big.');

[default prompt value was changed - Build upon]
sentencelength = sentence.length;

sentence array = sentence.split('');
sentence_array.reverse();
for (i — 0; i < sentence_array.length; i++) {

reversed_sentence += sentence_array[i] + ";
}

document. write(sentence + '

');
document.write(reversed_sentence);

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Third Run

var sentence = 'The skies in Montana are big.';
var sentence_length = 0;
var reversed_sentence = 'big very are Montana in skies The';
var sentence array = new Array();

sentence = prompt('Enter any sentence:',
'The skies in Montana are very big.');
sentence_length = sentence.length;

sentence_array = sentence. split('T h e s k i e s i n M o n t a n a a r e v e r y b i g ') ;
[tried to split a sentence other than the sentence in the variable
- Logic Error]

sentence_array.reverse();
for (i — 0; i < sentence array.length; i++) {

reversed sentence += sentence_array[i] + ' ';
}

document.write(sentence + '<brxbr>');
document, write(reversedsentence);

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX E

COMPARISON REPORT FOR JAVASCRIPT ERROR DOMAINS

CS ONLINE, SPRING 2003

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The purpose of this analysis is to compare consecutive attempts by students to

solve exercise 3-5-1. By comparing attempts the hope is to understand how the students

learned to code Javascript, as well how to improve upon the questions used within the

online program. Below is an example of how 3-5-1 appeared to the student.

Here's a helpful hint - the faster you're able to touch type, the quicker you'll be
able to write programs. If you don't know how to touch type, get a program that
you can install on your computer, and learn! In touch typing, words are counted
in chunks of five (5) characters. In other words, the sentence 'Touch typing will
help you become a better programmer since you will be able to type faster.
Typing faster will give you more time to concentrate on the programming - not
the typing.' has how many words? Write a program that inputs a sentence, like
this one, then tells you how many words there are in the sentence.

The student also had access to three hints, which they could use by choice. Each

exercise was worth 10 points, each hint level cost Vi point. The hints appeared to the

students as the examples on the following pages demonstrate.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

H in t 1 ' '

/ / H in t-1 i
/ / Count the- nu»foer o f tou ch ty p in g words in a
sontehpe.- '' 1 _ ,' •, . ■ ' , ' ’
/ / Pseudocode d e s c r ip t io n o f th e - s o lu t io n '
/ / (1), ,0$@ pron^h .fccr in p u t th e san tetip e
/ / '{2K The roaster p i words i s th e le n g th o f th e
S fn te n c S j,d iv id e d .by %- r [‘ , ,
/£ ' ll} . O utput/fehd'M fngth ‘u sin g , a % r t'f i W ."1 -t/-
d o c e n t , w r i t e i ’ - ‘ • ' ? ,v , <

mm

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

' ' tf ln t3 ■ . -
/ / m n t-3 ; ' - ‘ ■ ■ ■ ■ ! •
/ /„ Count th& number' 'of toacK typing words in a
sentence^ *
var sentence * prompt (" Enter the sen ten ce . ' , ,4fouch
typing,'will -help you beccoie a better programmer
since you will be able to type f a s t e r .*} ;
v a r '• mim^pf^worcts * ? / 5; ■ .
alert ('fhe^namber o,t words in the sentence is - ’ ?)v

In addition to the hints, there is an in-exercise example available for the student

that resembles the exercise. There is no point cost for using the example. The example

for 3-5-1 is rather lengthy, and is demonstrated on the following pages:

. Exanrml# ‘ -
/-/ > fxaiaplea of1' string pzgp^t’im 'ana methods "'usipgi
a b r o c c o l i soup r e c ip e .

, ~ * , *" S, *, <r , . ft . T . , ’ , ̂ „ , , * *

vap b r o c c o li_ so u p - 1 B r o c c o li soup is . ,a b len d o f
Jjr, •_ ,V l - .tl_ i lL., r< i

var so u p _slogan = ' *; ,//■ aij ajcpiy, s t r in g

// dhow how. some soring methods wgxlu q& ,.
s t b ih f i h ", h i \ „ ’ - ;
docom ont, wj*£ fc a { 1 Tfw* ^tiring, length" i# ; -*• * •' :
to tooco li_ fsou p tf«hgtl> ’ **’ ; ’ ;

d o c o m e n ^ * t p b o w e r C a s b { | , ■*■ * <

’}) ' ; - * ' / , >5 ■ , -i: ; ' ;v : ■ ., •
doetaapnt. w r ite {brocdoi i^sbhpfcobpperC ase (} + f

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//'Show how more m ethods work on ' th e string: ‘ :
ckKJu»<ap.t. write*! > fh e f;irst o ccu rren ce "off tiKe word
broccoli starts at c h a ia p te t / +
broc c o l i^ so u p . indexOf {’ Broccoli ’l-t*

document,write('fhe last occurrence of t^e word ;
broodoli starts ̂ at„character ’ +

1 It' V ,.rat 1,0 :
-r.» + , ?.‘.s«ufcs ^ 3r .0 € .1®5 *.............nMiiiX

....: : L ■ .

' i : . _ ' ’ * • :

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This particular analysis of 3-5-1 was comprised of 25 students and 198 attempts

and was conducted by one of the teaching assistants assigned to review student work.

Students submitted an average of seven to eight attempts for this exercise. Unless

otherwise stated, it is assumed that the final attempt was successful. The next section

demonstrates the actual ethnographic record and domain analysis as worded by the

teaching assistant for exercise 3-5-1:

Analysis:
Student # 1

General impressions of first attempt:
Three code lines, appears to have answer correct on first attempt.

2 compared to 1:
Added zero to prompt box. CLEAN UP

3 compared to 2:
Eliminated unneeded words in prompt. CLEAN UP

4 compared to 3:
Spaced sentence in prompt differently. CLEAN UP

5 compared to 4:
Same NO CHANGE (other)

6 compared to 5:
Removed zero from prompt. CLEAN UP

7 compared to 6:
Same NO CHANGE (other)

8 compared to 7:
Same NO CHANGE (other)

Overall comments:

Student has basic understanding of question. Six compared to five creates

undefined area in prompt box. The written area in prompt box above

where user inputs sentence could be better worded or at least presented

better. I do not know if the student understands how the prompt function

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

works or if the aesthetics of the box is even a concern for this student.

Overall the student met the criteria of the question.

Analysis:
Student # 2

General impressions of first attempt:
Two line first attempt. Hard math values used rather than one that is
dependant upon an input.

2 compared to 1:
Change in variable names and prompt added. Math dependant on input in
a variable. Addition of alert for an output.

SUDDEN CHANGE (HINT)

3 compared to 2:
Spelling corrected in variable name. Prompt gets parentheses.
Grammatical improvements in alert. GRAMMAR(misspell
& variable name)

SYNTAX (parentheses)
4 compared to 3:

Elimination of single quote prior to sentence.length/5 . Deleted spaces in
alert.

CLEAN UP
SYNTAX (mis-quote)

5 compared to 4:
Same. NO CHANGE (other)

6 compared to 5:
Addition of “+ ’ is’ “ in alert. CLEAN UP

7 compared to 6:
Elimination of spaces around word “is” in alert

CLEAN UP
8 compared to 7:

Addition of space after “is” in alert. CLEAN UP

9 compared to 8:
Same NO CHANGE (other)

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Overall comments:
Student seems to work well after what seemed to be the use of a hint. Most

of the steps showed clean up and some normal syntax and grammatical

errors.

Analysis:
Student # 3

General impressions of first attempt:
Proper logic, but spelling errors present. Appears similar to the hint

provided.

2 compared to 1:
Correction of spelling in prompt. GRAMMAR (misspell)

3 compared to 2:
Added words to prompt display. CLEAN UP

4 compared to 3:
Changed”word” to “ words” in alert. CLEAN UP

5 compared to 4:
Added spaces to alert wording. CLEAN UP

6 compared to 5:
Changed “the” to “a” in prompt. Returns moved as a result of space
change in prompt.

CLEAN UP

7 compared to 6:
Same NO CHANGE (other)

8 compared to 7:
Same NO CHANGE (other)

Overall comments:
Student had typical grammar and clean up issues. Note misspelling in

variable name, variable still worked as it was consistently misspelled.

Analysis:
Student # 4

General impressions of first attempt:
Appears to be a copy of a hint level of some kind.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 compared to 1:
Elimination of a line space, and an addition of a semi colon closing a line.

CLEAN UP

3 compared to 2:
Fills in question mark with a variable. BUILD UPON PROGRAM

4 compared to 3:
Incorrectly eliminates part of math formula SYNTAX (general

confusion)
Corrects capitalization in variable name. GRAMMAR (case

sensitivity)

5 compared to 4:
Eliminates value of variable completely OTHER
Adds “.length” to alert statement BUILD UPON PROGRAM

6 compared to 5:
Changes variable name, and uses new name to be an equivalent in another
variable. Not a drastic change.

OTHER

7 compared to 6:
Adds “+ / 5” to variable formula. BUILD UPON PROGRAM

8 compared to 7:
Eliminates “+/ 5” in variable and adds” /5” to a variable in an alert

function.
CLEAN UP
BUILD UPON p r o g r a m :

9 compared to 8:
Introduces two strings, and changes alert function to use new string rather
than previous formula. BUILD
UPON PROGRAM

EX: var stmg 1 =num_of_words.length/5
var stmg2=Math.round(stmg 1)

10 compared to 9:
Eliminates two string previously added, but creates a sophisticated alert
function to do the work of the two strings. BUILD
UPON PROGRAM

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

EX: alert('The number of words in the sentence is '
+Math.round(num_of_words.length/5));

11 compared to 10:
Same NO CHANGE (other)

Overall comments:
It’s always exciting when a student surpasses the expectations of the

problem. Rounding is not a part of the expected solution, but this student

accounted for it very well. This demonstrates a certain sophistication in

java script coding.

Analysis:
Student # 5

General impressions of first attempt:
Starts with variable, no output.

2 compared to 1:
Variable name change, addition of a prompt with parentheses added.
Elimination of part of a sentence. Created new variable with partial
formula. Created alert.

CLEAN UP
SUDDEN CHANGE (HINT)
S YNTAX (parentheses)

3 compared to 2:
Change in math formula using hard numbers instead of dependant
variables.

SYNTAX (general confusion)

4 compared to 3:
Put previously deleted sentence back into prompt. Corrected math formula
to be dependant on variable length.

CLEAN UP
LOGIC CHANGE

Overall comments:

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Student arrived at answer more quickly than the average. I suspect he had

some form of outside help, perhaps the teacher or another student provided

some direction.

Analysis:
Student# 6

General impressions of first attempt:
Four lines with text book correct answer. Identical to hints provided. Only
one attempt made.

Overall comments:
Perhaps the server had gone down losing students previous attempts. The
student may have remembered solution from previous work.

Analysis:
Student # 7

General impressions of first attempt:
One line, prompt with “your Mom looks like a dinosaur.”, preloaded in
window. Able to generate an output.

2 compared to 1:
Adds variable with proper math that is dependant on another variable.
Note use of variable names different then hints.
Adds alert complete with sentence, “the number or you suck my peepee
is”

BUILD UPON PROGRAM

3 compared to 2:
Changes alert to more appropriate sentence. CLEAN UP

4 compared to 3:
Same NO CHANGE (other)

Overall comments:
The student seems to be entertaining himself during programming.

Demonstrates a constant build with a consistent attitude. I would be

curios to verify hint levels on this one.

Analysis:
Student # 8

General impressions of first attempt:
Text book correct answer, same variables as the hints.

2 compared to 1:

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Same NO CHANGE (other)
3 compared to 2:

Addition of space in alert between variable and written sentence.
CLEAN UP

Overall comments:
If a student starts with a correct answer, there is little change to track.
This is the second student, possibly the third up to this point who arrive at
the answer curiously quick.

Analysis:
Student # 9

General impressions of first attempt:
No attempt was made. This is the only student out of the received data
that had not made it as far as 3-5-1. I still included this student in the data
because this student was a part of the test group. When figuring out mean,
median, and mode of attempts of the test group, removing the two highest
and two lowest numbers made little difference on the answers.

Overall comments:
See Appendix El for additional information

Analysis:
Student # 10

General impressions of first attempt:
Variable established with content of “Your mom is so fat”
A string is established with no content.
No output would be generated from this attempt.

2 compared to 1:
Document.write added. BUILD UPON PROGRAM

3 compared to 2:
Addition of prompt to initial variable as well as more appropriate
sentence.

BUILD UPON PROGRAM

4 compared to 3:
Deletion of string variable. Deletion of document.write . Added alert.

CLEAN UP
BUILD UPON PROGRAM

5 compared to 4:
Changes wording of prompt for what would show above entry window.

CLEAN UP

6 compared to 5:
Adds “+” to alert to fix math syntax in alert.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SYNTAX (general
confusion)

7 compared to 6:
Changes what would appear in “fill in” window on prompt.

CLEAN UP

8 compared to 7:
Same NO CHANGE (other)

9 compared to 8:
Same NO CHANGE (other)

10 compared to 9:
Same NO CHANGE (other)

Overall comments:

I would imagine a hint level was used in 4th attempt. Otherwise a standard

build up.

Analysis:
Student # 11

General impressions of first attempt:
Prompt is aesthetically well done. Variable has hard math value rather
than one dependant on variable. Appears to be based of hint with similar
variable names.

2 compared to 1:
Change in formula to be dependant on variable.

LOGIC CHANGE

Overall comments:
Another quickly solved problem, I believe changing from a hard math

formula to a formula dependant on a variable is a change in logic. With

this student starting out with a close copy of a hint, its hard to believe

there was a sudden change in reasoning. More likely is a better job of

following a given hint.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Analysis:
Student # 12

General impressions of first attempt:
Started with a variable prompt and an empty string with a comment
identifying it as an empty string.

2 compared to 1:
Shortened prompt sentence. CLEAN UP
Variable Change that is equivalent to another variables length (that does
not exist yet), divided by five. SUDDEN
CHANGE (other)
Addition of an alert statement.

3 compared to 2:
Change of variable name again with corresponding change in formula that
uses the variable. No difference in output.

CLEAN UP

4 compared to 3:
A change made to variable name in prompt now makes it correlate to
formula in another variable. Note that name matches hint name.

GRAMMAR (variable name)

5 compared to 4:
Shortened Prompt sentence again. CLEAN UP

Overall comments:
I would imagine a use of a hint in the sudden change, but because of misnamed

variables from the hint, it could be some other change.

Analysis:
Student# 13

General impressions of first attempt:
Unlike any other students first attempt so far. It appears to be a baseball
related program that changes the case of the letters. Obviously copied
from somewhere. Student is trying to find a similar program to what is
being asked, and plans to cut it up and modify it as needed to achieve the
desired results. This is rather like reducing a block of wood to a sculpture.
This is an example of another strategy that students utilize

2 compared to 1:
Eliminates a zero in second to last line, as well as a pair of single quotes.

CLEAN UP

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 compared to 2:
Eliminates Upper and Lower case part of code as well as the sentence that
would be a repeat if left in. CLEAN UP

4 compared to 3:
Eliminates two large blocks of program. S UDDEN CHANGE (other)

5 compared to 4:
Eliminates one break from a double break. CLEAN UP

6 compared to 5:
Adds a sentence to a variable. Sentence added will be generated on output.

OTHER

7 compared to 6:
Adds two variables, both related to length. BUILD UPON PROGRAM

8 compared to 7:
Changes name of first variable, and adds a sentence to the variable that
resembles the question at hand. Partially eliminates another variable.
Changes a variable in a doc .write formula to match new name of
first variable. SUDDEN CHANGE (other)

9 compared to 8:
Creates a new undefined variable and eliminates two variables related to
length. SUDDEN
CHANGE (other)

10 compared to 9:
Restores previously deleted variables related to length.

SUDDEN CHANGE (Return
previous code)

11 compared to 10:
Capitalized a variable’s first letter in a formula, although variable
referenced
does not yet exist. GRAMMAR (case

sensitivity)

12 compared to 11:
Eliminates two variables that reference length, and adds a space in the
after an undefined variable’s name.

CLEAN UP

13 compared to 12:

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Added a document.write that references another variable correctly and
determines that variables length correctly. BUILD
UPON PROGRAM

14 compared to 13:
Removed space after single quotation last line.

CLEAN UP

15 compared to 14:
Changed sentence in document write output. CLEAN UP

16 compared to 15:
Same. NO CHANGE (other)

17 compared to 16:
Addition of parentheses with correct length divide by five formula in
document.write statement. BUILD
UPON PROGRAM

18 compared to 17:
Same. NO CHANGE (other)

Overall comments:
This seemed a particularly painful journey to a solution. It is difficult to

say where and if hints were used. I did find myself wondering how clear

the question was that started this journey. This particular answer does not

use a prompt. Perhaps the question should be specific about using a

prompt. Perhaps this just demonstrates that the reduction method of

programming is not very efficient.

Analysis:
Student # 14

General impressions of first attempt:
Another long copied program probably from the text of chapter. Appears
to be another attempt of reducing a large program to met the needs of the
question.

2 compared to 1:
Changes sentence in prompt so that prompt window will default to display
the sentence “Stephanie wines to much about everything...” .

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CLEAN UP

3 compared to 2:
Cuts notes, functions, for loop, and document.write reverse.

SUDDEN CHANGE (other)

4 compared to 3:
Added word “length” to variable named in formula, variable does exist.
Added word “array” to variable named sentence, variable does exist.

BUILD UPON PROGRAM

5 compared to 4:
Reversed order of two lines.

CLEAN UP

6 compared to 5:
New final sentence in document.write, uses quotes.

CLEAN UP

7 compared to 6:
Added document.write command referring to a proper variable.

BUILD UPON PROGRAM

8 compared to 7:
Changes sentence in prompt window to test program.

OTHER

9 compared to 8:
Same NO CHANGE (other)

Overall comments:
Student built a program that seems to generate the proper output in a sophisticated

manner different from the given solution. I would have to admit that I don’t get

how this program works, but I believe it is counting spaces between words. It

does not count every fifth character as it should. Even if this is wrong, I can

appreciate the journey in problem solving.

EX: Final Program
// Declare variables to be used by this program
var sentence =
var sentence_length = 0;
var sentence_array = new Array();

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sentence = prompt('Enter any sentence:',
'Jack and Jill went up the hill to fetch a pail of water...');

sentence array = sentence.split('');

sentence_length - sentencearray.length;
document. write(sentence + '

');
document.write("The number of words in this sentence is " + sentence length +
'

');

Analysis:
Student # 15

General impressions of first attempt:
Student has copied example and will try to reduce this program to meet
the question at hand.

2 compared to 1:
Same NO CHANGE (other)

3 compared to 2:
Cuts five document.writes and a variable. SUDDEN CHANGE (other)

4 compared to 3:
Cuts rest of program, and creates document.write related to the matter at

hand.
SUDDEN CHANGE (other)

5 compared to 4:
Changes variable name in line one and adds prompt with appropriate
sentence in same line. Makes change in document.write by adding proper
variable to formula. Makes additional change in final document.write with
proper length/5 element.

BUILD UPON PROGRAM
6 compared to 5:

Same NO CHANGE (other)

7 compared to 6:
Same NO CHANGE (other)

Overall comments:
Student was efficient in using reduction method. I would be curious to see hint

levels used. I suspect hints may not have been used.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Analysis:
Student #16

General impressions of first attempt:
Four line code using variables called string. One line splits string.
Document write produces string length.

2 compared to 1:
Added zero in brackets to string variable. BUILD UPON PROGRAM

3 compared to 2:
Changed all variable names, added a a variable equivalent of sentence.split
(a properly defined variable in program). Added an output alert with
length function.

SUDDEN CHANGE (other)

4 compared to 3:
Same NO CHANGE (other)

5 compared to 4:
Added double Quotes. SYNTAX (mis-quote)
Removed parentheses from alert. SYNTAX (parentheses)

6 compared to 5:
Added prompt and changed sentence in parentheses.
Added sentence to alert. BUILD UPON PROGRAM

7 compared to 6:
Same NO CHANGE (other)

Overall comments:
Although student would generate an output, it would not be correct. It

would display the number of characters in a string. Very close, needs the

divide by five after the length function.

Analysis:
Student # 17

General impressions of first attempt:
Two lines with out put.

2 compared to 1:

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Adds a prompt, drops an alert. Adds a document.write with proper formula
for length with in a sensible sentence. BUILD
UPON PROGRAM

3 compared to 2:
Deletes an apostrophe due to single quote. SYNTAX (mis-quote)

4 compared to 3:
Adds an array with a split. Adds new document.write using the added
array. BUILD
UPON PROGRAM

5 compared to 4:
Cuts original document.write that used the .length function.

CLEAN UP

6 compared to 5:
Changes sentence in final line of document.write.

CLEAN UP

7 compared to 6:
Same NO CHANGE (other)

Overall comments:
The split method shows that the student is actively trying to pull

information from the chapter. Unfortunately it is not the answer to this

problem. Could the question be written in such a way that the student puts

a predetermined sentence in the prompt to arrive at a specific output.

Many other questions are like this. Hints were also not used by this

individual (assumed) , What if the first hint had no points taken off?

Would this facilitate a hint in right direction being used?

Analysis:
Student # 18

General impressions of first attempt:
6 lines of code. Initial code utilizes split function.

2 compared to 1:
Adds break to last line of document.write. CLEAN UP

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 compared to 2:
Adds an “s” to the word sentence in final doc.write

CLEAN UP

4 compared to 3:
Changes
 to <p> CLEAN UP

5 compared to 4:
Added Parentheses to Array SYNTAX (parentheses)

Overall comments:
Another student uses split due to no way to check answer. A particular sentence

with some short words and many spaces that has to be entered into the prompt to

determine if it matches some specific number given in the question would be

helpful to this situation.

Analysis:
Student # 18

General impressions of first attempt:
Copy of a program dealing with track. Another student tries to whittle
down a program so as to match the question at hand.

2 compared to 1:
Deletes lines that deal with upper and lower case.

CLEANS UP

3 compared to 2:
Deletes 5 unneeded document write lines. CLEANS UP

4 compared to 3:
Deletes last six lines of program. SUDDEN CHANGE (other)

5 compared to 4:
Deletes document.write CLEAN UP
Adds HTML code to Justify word track in current last line.

SYNTAX (language
confusion)

6 compared to 5:
Changes initial variable and installs a sentence related to problem at hand.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Changes document write to create output of above variable installed.
First time code resembles problem being attempted.

OTHER

7 compared to 6:
Shortened initial variable sentence.
Added variable called Programming

BUILD UPON PROGRAM

8 compared to 7:
Copied broccoli example from problem, all previous program

gone.
SUDDEN CHANGE (other)

9 compared to 8:
All new program, broccoli is gone. Seems correct except missing
divide by five component.

SUDDEN CHANGE (other)
10 compared to 9:

Adds additional break to document.write.
Adds a document .write to final line. BUILD UPON PROGRAM

11 compared to 10:
Adds parentheses to final document.write that contain the .length/5
function. BUILD
UPON PROGRAM

12 compared to 11:
Cuts a variable, and a single quote followed by a plus sign in final
document.write. This creates a misquote and general confusion. I
will call this other for now. OTHER

13 compared to 12:
Added word “Example” to initial variable string.
Added quote and plus back in. SYNTAX (misquote)

SYNTAX (general
confusion)

Added alert with .length/5 function BUILD UPON PROGRAM

14 compared to 13:
Added new variable with prompt.
Added new alert line. BUILD UPON PROGRAM

15 compared to 14:

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Code drops to two lines, new variable is used. Alert with proper
.length/5 with addition sentence added. SUDDEN
CHANGE (other)

16 compared to 15:
Added a document.write that has same out put as alert.

BUILD UPON PROGRAM

Overall comments:
A long trip to a solution with many changes along the way.

Analysis:
Student # 20

General impressions of first attempt:
First attempt is a copy of a modified broccoli example.

2 compared to 1:
Broccoli goes away and is replaced three lines of code. Code has hard
math rather than variable dependant math formula.

SUDDEN CHANGE (other)

3 compared to 2:
Moves single quote mark in final line. CLEAN UP

4 compared to 3:
Adds a period in final quote. CLEAN UP

5 compared to 4:
Shortens initial prompt.
Changes alert sentence (still not correct) CLEAN UP

6 compared to 5:
Changes variable equivalent to proper formula sentence.length/5.

SYNTAX (general
confusion)

7 compared to 6:
Adds single quotes to separate prompt components.

SYNTAX (misquote)
Changed alert sentence, still not correct. BUILD UPON PROGRAM

8 compared to 7:
Adds a period in prompt default sentence, Added single quote to middle of
alert. BUILD
UPON PROGRAM

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9 compared to 8:
Adds a plus after previously added single quote.

SYNTAX (general
confusion)

10 compared to 9:
Adds additionional single quote to alert SYNTAX (mis-quote)

11 compared to 10:
Removes quotes from none sentence, variable reference in final line.

SYNTAX (mis-quote)

Overall comments:
Another long journey to a solution, with much learning along the way.

Analysis:
Student # 21

General impressions of first attempt:
Appears to be hint one code with incorrect characters filling in the

question mark.

2 compared to 1:
Changes alert code to reference a variable. BUILD UPON PROGRAM

3 compared to 2:
Changes wording of prompt window. CLEAN UP
Changes variable in alert code to hard number.

SYNTAX (general
confusion)

4 compared to 3:
Changes alert to document.write. CLEAN UP

5 compared to 4:
Declares a variable with no content, and moves prompt line but maintains
variable used with prompt that is now established at beginning of program.
Creates new variable. OTHER
Changes content of prompt to “’Enter a sentence that contains the word

hi:’
‘ I said hi to the bum instead of giving him a handout.’”, This test for an
out put, but more importantly he puts a formula in that figures out the
length of characters an a variable.

BUILD UPON PROGRAM

6 compared to 5:

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Changes variable value. Creates new variable with hard math formula
rather than one dependant on variable value.

BUILD UPON PROGRAM

7 compared to 6:
Adds alert with a hard number. BUILD UPON PROGRAM

8 compared to 7:
Same NO CHANGE (other)

9 compared to 8:
Cut out variable that determined sentence length.

CLEAN UP

10 compared to 9:
Major change. Eliminates a variable that determines sentence length, as
well as a variable used to figure out number of words with hard numbers.
Installs a new sentence in prompt (now in first line as in attempt 1) that is
identical to the highlighted words in the question. Two new out puts
replace the alert. One of the out put s uses the .length code.

SUDDEN CHANGE (other)

11 compared to 10:
Deletes one of the document, write installed in previous attempt.

CLEAN UP

12 compared to 11:
Same NO CHANGE (other)

13 compared to 12:
Same NO CHANGE (other)

14 compared to 13:
Reestablishes document.write previously deleted.

CLEAN UP

15 compared to 14:
Same NO CHANGE (other)

16 compared to 15:
Adds a plus sign document.write. SYNTAX (general

confusion)

17 compared to 16:
Same NO CHANGE (other)

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18 compared to 17:
Adds divide by five to .length component in final document write

BUILD UPON PROGRAM

19 compared to 18:
Shortens prompt wording CLEAN UP

20 compared to 19
Same. NO CHANGE (other)

Overall comments:
This student had the longest journey to a working solution, but finally

made it. Final answer is different from hint solution, but contains similar

components.

Analysis:
Student # 22

General impressions of first attempt:
Two lines, first one establish a variable with sentence highlighted in the
problem. Second line determines variable length and out puts through
document.write.

2 compared to 1:
Student begins to play with split function. A variable called split is
declared and is equivalent to a newArray. Split is then made equivalent
to sentence.split. Document.write is changed to split.length.

BUILD UPON PROGRAM

3 compared to 2:
Adds a new variable called length that is equal to split.length.
Changes document.write output to new variable length.

BUILD UPON PROGRAM

4 compared to 3:
Adds two document.write statements, one which writes the initial variable
sentence. The other is installs a space in out put.

CLEAN UP

5 compared to 4:
Adds single quotes and a semi colon to document.write that creates a
space. Drops “var” from line with a variable that is already declared.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SYNTAX (general
confusion)

6 compared to 5:
Deleted a space in what should be the prompt sentence but is the initial
variable.

CLEAN UP

7 compared to 6:
No change NO CHANGE (other)

Overall comments:
Another split method solution. Wording in question may need attention.

The students are asked to count the words in a sentence. Then the

question asks them to write a program that tells them how many words are

in the sentence. It would be easy for students to physically count the words

as they appear rather than every five characters, then write a program that

does the same. Perhaps the “chunks of five” reference needs to be repeated

where it asks the student to write the program to draw more attention to it.

Analysis:
Student # 23

General impressions of first attempt:
Copy of example regarding broccoli soup.

2 compared to 1:
Deletes document.write, adds returns to layout program better per code
line. When copied some of the lines blended together.
Basically reduces program. CLEAN UP

3 compared to 2:
Deletes large chunk of program SUDDEN CHANGE (other)

4 compared to 3:
Changes variable broccoli soup to beef soup.
Deletes document.write CLEAN UP

5 compared to 4:
Same NO CHANGE (other)

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 compared to 5:
Deletes ‘words’ from document.write sentence out put.

CLEAN UP

7 compared to 6:
Corrects a variable name in document.write to match an existing variable
established in first line of code, (beef soup) SYNTAX
(function parameters)

8 compared to 7:
Adds divide by five function to document write.

BUILD UPON PROGRAM

9 compared to 8:
Replaces ‘words’ in out put of document.write

CLEAN UP

10 compared to 9:
Deletes ‘words’ again.

CLEAN UP

11 compared to 10:
reversed placement of two lines CLEAN UP

12 compared to 11:
Same NO CHANGE (other)

Overall comments:
This is a strange answer to the question at hand as it deals with beef soup.

The logic behind the program works, and ultimately it will generate a

correct answer based on the sentence used. Perhaps the question should

require a prompt?

Analysis:
Student # 24

General impressions of first attempt:
Five line code plus comments. Establishes two variables, creates a prompt
and determines length of characters in prompt. Has out put o f number of
characters in prompt.

2 compared to 1:

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Changes output of document.write to read sentence in prompt followed by
“has” followed by number of characters based upon.length variable,
followed by “ in it”.

CLEAN UP

3 compared to 2:
Adds strange use of double and single quotes in final document.write.

SYNTAX (mis-quotes)

4 compared to 3:
Replaces double quotes with parentheses. SYNTAX (parentheses)

5 compared to 4:
Adds “word” to out put. CLEAN UP

6 compared to 5:
Declares a new variable, and tries to manipulate it to split sentence length.

BUILD UPON PROGRAM

7 compared to 6:
Same NO CHANGE OTHER

Overall comments:
Another split attempt, unsuccessful. Does not work. Student had submitted this as

a final and needed to be reset.

Analysis:
Student # 25

General impressions of first attempt:
Modified broccoli beginning. Demonstrates some work to answer question
at hand. Interesting strategy of pasting example and modifying it to meet
the question. Several students have used this as a way to arrive at
answers.

2 compared to 1:
Deletes document.write. CLEAN UP

3 compared to 2:
Same NO CHANGE (other)

4 compared to 3:
Deletes a slash and return in variable sentence.

CLEAN UP

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5 compared to 4:
Removes two document.write codes regarding upper and lower case letters
not needed in this question. CLEAN UP

6 compared to 5:
Same NO CHANGE (other)

7 compared to 6:
Same NO CHANGE (other)

Overall comments:
Program will not give proper out put. If student was aware of proper output value,

they may have continued working to solve issues.

I would say that programming is much like sculpture. You can take material and

build it up into a construct, or you can take material and reduce it down to a construct.

Each attempt is a journey to the end construct. Mistakes are a part of that journey and

certainly a part of learning. In going through each of these students’ journeys, I found I

kept wondering how the journey was launched? I kept reconsidering the original

question. Why were some students dividing by five and others using a split method?

Why were students submitting an answer that was not reaching the goal of the question? I

also found myself wondering about the aesthetics of the program solutions. Why were

hints not used, and is this necessarily good or bad? I will now attempt to address each of

these issues.

To begin I will address the fact that a lot of information is dumped on the student

before attempting this question. I would consider it an overwhelming amount of

Analysis Summary

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

information to be able to narrow down the needed components of this particular question

of 3-5-1. The example that students pull from is also long and has many sophisticated

components that are not needed to answer this particular question. My immediate

thought is that this chapter needs to be broken into smaller components, perhaps

introducing a few string objects to work with at a time. The example needs to be simple

utilizing one string object instead of several.

The way the question is worded is cute, but also vague. This is good as it allows

the student to interpret it differently and immediately be creative in generating an answer.

Although the question describes touch typing as counting words in chunks of five

characters, when the question directs students to write a program is does not define to use

the touch method. Another issue is that the example sentence is long. Upon reading the

sentence, the student is asked to count the words in the sentence. Most students are going

to count per word. Visually the long example sentence separates them far from the

chunks of five character reference, which is easily forgotten after reading the sentence.

After a student counts the words in a sentence, they are asked to write a program that tells

them how many words are in the example sentence. Changing the write sentence to read,

“Write a program that inputs a sentence and counts words in terms of five characters per

word.” may help the situation.

In referring to why students were submitting solutions that did not have correct

answers, a possible solution would be to have several test sentences that could be put into

the program that have a particular value the students had to match. Requiring the use of a

prompt takes away from a creative factor, but is a logical solution to the question at hand.

The input of the sentence was handled many ways by the students in this study. There

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

seemed no aesthetic concern on how the answer was arrived at, or how a sentence was

put in, or what sentenced was put in. I would like for students to be aware of the

aesthetic presentation of their codes, and demonstrate that they know how to control how

a prompt appears. Requiring a prompt with specific information displayed would help

this issue.

Another issue that may help students is to use hints. What if the first hint was

free, and the remaining hints were VSs of a point? The pseudo code would certainly

launch the journey in the right direction, but many students do not use the code as they

lose points. Changing the value of the points may make the first code hint more

welcoming to the students, and launch their journey better.

Other considerations would include that the managers window currently shows

the solution when the hint levels are looked into, making it hard for the TA’s to know

how the use of a hint effected a students program. All the hints from the management

screen show the solution, not the hint.

According to domains, students tended to clean up their work more than any other

domain. I feel that is normal. Other domain counts do not seem unreasonable for

students learning a computer language. This is part of the journey. Perhaps a good

journey after this question would to be to adjust this program to round as one student had

successfully done.

I believe the CS Online course is a very exciting option for students and schools

to have available to them. The refinement this type of study offers in constructing CS

Online can only serve to make it stronger.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix El

SOURCE CODE KEY FOR 3 - 5-1
Attachment: Date: ICON:
researchQ5DataGroup2a 233k may 1st 0
researchQ5DataGroupla 725k may 1st *
researchQSDataGrouplb 337k may 1 st 0
researchQ5DataGroup2b 85k may 1st ❖
researchQ5DataGroup2b 72k may 2nd El
researchQ5DataGrouplc 75k may 2nd §€
researchQ5DataGroup2c 49k may5th O
researchQ5DataGroup2d 140k may5th ♦
researchQ5DataGroupld 56k maySth 0

Student #1 ROJAF 0 Attempts
Student #2 STAMENKOVICM 0 Attempts
Student #3 RICHC f t Attempts
Student #4 OTTD ft Attempts
Student #5 BALINTNM $ Attempts
Student #6 GLENNYC # Attempts
Student #7 HUTCHIN s f± » e Attempts
Student #8 JOHNSONG 0 Attempts
Student #9 MALISA Attempts
Student #10 MCINTIRE 0 Attempts
Student #11 HOWARDL 0 Attempts
Student #12 IANID Attempts
Student #13 JOSHPOWEL > C t k Attempts
Student #14 TERRELLE Attempts
Student #15 BALINTS ❖ Attempts
Student #16 KELLER ❖ Attempts
Student #17 KISS ❖ Attempts
Student #18 LYONSA ❖ Attempts
Student #19 LOF m Attempts
Student #20 MC m Attempts
Student #21 BOYDB % Attempts
Student #22 WILLBEGR ♦ Attempts
Student #23 SCHAFFERS ♦ Attempts
Student #24 STATS 0 Attempts
Student #25 REIKO 0 Attempts

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
9
8
11
4
1
4
3
0
10
2
5
18
9
7
7
7
5
16
11
20
7
12
7
7

www.manaraa.com

From lowest to highest number of attempts would look like this

0,1,2,3,4,4,5,5,7,7,7,7,7,7,8,8,9,9,10,11,11,12,16,18,20 fora total of 198 attempts

From this data we can determine the following;
Mean 7.92 attempts Median 7 attempts Mode 7 attempts

If we eliminate the two lowest and highest attempts
2,3,4,4,5,5,7,7,7,7,7,7,8,8,9,9,10,11,11,12,16, for a total of 159 attempts
Mean 7.57 attempts Median 7 attempts Mode 7 attempts

This demonstrates little change in the outcome of the data, making the mean, median, and

mode valid throughout wide variations of attempts of the students.

Appendix Y

M A JO R DOMAIN PIE

m

E a t . Syntax-w hat the language requires
■II. Grammar
□111. Sudden C hange - drastic
□ IV. Dissection
■V . Build upon program
a VI. Comment - take out one line a t a time
■VII. No change {re-run)
□Vlll. C lean u p
BIX. Planning
■X. Logic change
□XI. Other

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SYNTAX

|0 (1) parentheses
M (2) 0 brackets
0 (3) fl brackets
0 (4) m is-quote-"" versus"
8B(5) function param eters
0 (6 } language confusion
® (7) general confusion (math, etc)
0 (8) o ther _______

GRAMAR PIE

0 (1) misspell !
■ (2) c ase sensitivity
□ (3) variable nam e j

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SUDDEN CHANGE PIE

j 13(1) Plagiarism
IS®(2) Hint
| □ (3) Return to previous code
10 (4) other

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

Allan, V. H. & Kolesar, M. V. (1996). Teaching computer science: A problem solving

approach that works. Call of the North, NECC 1996. Proceedings of the Annual

National Educational Computing Conference - Call of the North NECC,

Minneapolis, MN, June 1996.

Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules

in the acquisition of a cognitive skill. Journal o f Experimental Psychology:

Learning, Memory, and Cognition, 23, 932-945.

Association for Computing Machinery (ACM). (1985a). Computer science for secondary

schools: Course content. Communications of the ACM task force on curriculum

for secondary school computer science, 28, 270-274.

Association for Computing Machinery (ACM). (1985b). Proposed curriculum for

programs leading to teacher certification in computer science. Communications of

the ACM task force on teacher certification in computer science, 28, 275-279.

Association for Computing Machinery (ACM). (1993). ACM task force of the pre­

college committee: ACM model high school computer science curriculum. New

York: ACM Press.

Association for Computing Machinery (ACM). (2003). ACM Education Task Force:

Survey of the present state of computer science education in the United States.

2003.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from

Examples: Instructional Principals from the Worked Examples Research. Review

o f Educational Research, 70(2), 181-214.

Ayers, P. (1993). Why goal free problems can facilitate learning. Contemporary

Educational Psychology, 18, 376-381.

Baylor, A. L., & Kozbe, B. (1998). A personal intelligent mentor for promoting

metacognition in solving logic word puzzles. Paper presented at the Fourth World

Congress on Expert Systems (Mexico City, Mexico, March 1998).

Bayman, P., & Mayer, R. E. (1988). Using conceptual models to teach BASIC computer

programming. Journal o f Educational Psychology, 80(3), 291-98.

Becker, B.W., Graham, S. (2000). The university perspective on the new high school

computer science curriculum. Available from

http://www.math.uwaterloo.ca/%7Ecshsliai/Symposium. Presentation

V3/sld001.htm.

Booth, S. (1990). Conceptions of programming: A study into learning to program.

Goteborg Univ., Molndal (Sweden), Institute of Education.

Bruner, J. S. (1966). Toward a theory of instruction. New York: W. W. Norton.

Brusilovsky, P. (1994). Teaching programming to novices: A review of approaches and

tools. Educational Multimedia and Hypermedia. Proceedings of ED-MEDIA 94 -

World Conference on Educational Multimedia and Hypermedia, Vancouver, B.C.,

1994.

Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical

synthesis. Review o f Educational Research, 65, 245-281.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.math.uwaterloo.ca/%7Ecshsliai/Symposium

www.manaraa.com

Campbell, A. (1984). Vocational education in an information age: Society at risk?

Occasional Paper No. 99. National Center for Research in Vocational Education,

Ohio State University. Columbus, Ohio, 1984.

Casey, P. J. (1997). Computer programming: A medium for teaching problem solving.

Computers in the Schools, 13(1-2), 41-51.

Catrambone, R. (1994a). The effects of labels in example on problem solving transfer. In

A. Ram, & K. Eiselt (Eds.). Proceedings of the Sixteenth Annual Conference of

the Cognitive Science Society (pp. 159-164). Hillsdale, NF: Erlbaum.

Catrambone, R. (1994b). Improving examples to improve transfer to novel problems.

Memory & Cognition, 22, 606-615.

Catrambone, R. (1995a). Aiding subgoal learning: Effects on transfer. Journal o f

Educational Psychology, 87, 5-17.

Catrambone, R. (1995b). Effects of background on subgoal learning. In J. D. Moore & J.

F. Lehman (Eds.), Proceedings of the Seventeenth Annual Conference of the

Cognitive Science Society (pp. 259-264). Hillsdale, NJ: Erlbaum.

Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal

of Experimental Psychology: Learning, Memory, and Cognition, 22, 1020-1031.

Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction.

Cognition and Instruction, 8, 293-332.

Chandler, P., & Sweller, J. (1992). The split attention effect as a factor in the design of

instruction. British Journal o f Education Psychology, 62, 233-246.

Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer

program. Applied Cognitive Psychology, 10, 151-170.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self­

explanations: How students study and use examples in learning to solve problems.

Cognitive Science, 13, 145-182.

Chi, M., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In Sternberg, R.

(ed.), Advances in the Psychology of Human Intelligence, Erlbaum, Hillsdal, NJ,

pp. 7-75.

Coad, P., & Yourdon, E. (1993). Object-oriented programming (second edition).

Englewood Cliffs, NJ: Prentice Hall, 1993.

College Board, (2003a). Computer Science A Overview. Available from

http://apcentral.collegeboard.eom/article/0,1281,151-162-0-4345,OO.html.

College Board, (2003b). Advanced placement program course description: Computer

Science. New York: The College Board, May 2003. Available from

http://www.collegeboard.com/ap/pdf7cd_computer_science_03.pdf.

Colorado Department of Education (CDE). (1996). Colorado model content standards.

Denver, CO: Department of Education.

Connolly, M.V. (1996). Starting computer science using C++ with objects: A workable

approach. Proceedings from the 1996 AS CUE Conference.

Cooper, G. (1998). Research into cognitive load theory and instructional design at

UNSW. Available from

http://www.arts.unsw.edu.au/education/CLT_NET_Aug_97.HTML.

Dalbey, J., & Linn, M. C. (1985). The demands and requirements of computer

programming: A literature review. Journal o f Educational Computing Research,

1(3), 253-274.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://apcentral.collegeboard.eom/article/0,1281,151-162-0-4345,OO.html
http://www.collegeboard.com/ap/pdf7cd_computer_science_03.pdf
http://www.arts.unsw.edu.au/education/CLT_NET_Aug_97.HTML

www.manaraa.com

Dalton, D. W., & Goodrum, D. A. (1991). The effects of computer programming on

problem-solving skills and attitudes. Journal o f Educational Computing Research,

7(4), 483-506.

Deek, F. P., & Kimmel, H. (Eds.). (1998). Computer science education in the secondary

schools: Curriculum guidelines, content and professional development.

Proceedings of the 1995, 1996 and 1997 conferences. Newark, NJ: New Jersey

Institute of Technology.

Deek, F. G., & Kimmel, H. (1999). Status of computer science education in secondary

schools: One state’s perspective. Computer Science Education, 9(2), 89-113.

Delcros, V. R., & Bums, S. (1993). Mediational elements in computer programming

instruction: An exploratory study. Journal o f Computing in Childhood Education,

4(2), 137-52.

Dillon, A., & Gabbard, R. (1998). Hypermedia as an educational technology: A Review

of the Quantitative Research Literature on Learner Comprehension, Control, and

Style. Review o f Educational Research, 68, 322-349.

DuPoint, A. P. (1998). Technology Night. Education Leadership, 55(8), 74-75.

Education Week, (2002). E-Defining education. Education Week, 21(35), 1-11.

Foreman, K. H. (1990). Cognitive characteristics and initial acquisition of computer

programming competence. School o f Education Review, 2, 55-61.

Gesler, W., & Kaplan, A. (1993). Computer programming in a spatial analysis course.

Journal o f Geography, 92(3), 139-145.

Glaser, R. (1976). Components of a psychology of instruction: Toward a science of

design. Review o f Educational Research, 46, 1-24.

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Goktepe (1985). Design and implementation of a tool for teaching programming.

Computer and Education, 3rd Edition. New York: McGraw-Hill.

Goldenson, D. (1996). Why teach computer programming? Some evidence about

generalization and transfer. Call of the North, NECC ’96. Proceedings of the

Annual National Educational Computing Conference, Minneapolis, Minnesota,

June, 1996.

Google (2003). Web definitions. Support.sbcglobal.net/general/662.shtml

Greenburg, G. (1991). A creative arts approach to computer programming. Computers

and the Humanities, 25(5), 267-273.

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J., Terasvirta, T. & Vannien, P. (1997).

Animation of user algorithms on the web. Proceedings from the Visual Languages

’97 Conference, Capri, Italy.

Haataja, A., Suhonen, J., Sutinen, E,, & Torvinen, S. (2001). High school students

learning computer science over the web. IMEJ Article, Wake Forest University.

Imej. wfu. edu/ articles/200172/04/index. asp.

Hadjerrouit, S. (1998). Java as first programming language: a critical evaluation. SIGSCE

Bulletin, June 1998.

Hancock, C. (1988). Context and creation in the learning of computer programming. For

the Learning o f Mathematics, 8(1), 18-24.

Hartley, K., & Bendixen, L. (2000). Learning with hypermedia: The role of

epistemological beliefs and self-regulation. Society for Information Technology

& Teacher Education International Conference: Proceedings of SITE 2000 (11th,

San Diego, California, February 8-12,2000). Volumes 1-3.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hartley, K., & Bendixen, L. D. (2001). Educational research in the Internet age:

Examining the role of individual characteristics. Educational Researcher,

December 2001, 22-26.

Hong, E. (1998). Differential stability of state and trait self-regulation in academic

performance. The Journal o f Educational Research, 91(3), 148-158.

Hong, E. (2001a). Construct validation of a trait self-regulation model. International

Journal o f Educational Psychology, 36(3), 186-194.

Hong, E. (2001b). Self-Assessment Questionnaire. University of Nevada, Las Vegas.

Hong, E. (2003). Math experience questionnaire. University of Nevada, Las Vegas.

Hong, E., & Halopoff, G. (2003). Computer experience questionnaire. University of

Nevada, Las Vegas.

ISTE Accreditation Committee (1992). Proposed NCATE curriculum guidelines for the

specialty area of educational computing and technology: Proposal to NCATE,

Eugene, OR: ISTE.

Jang, Y. (1992). Cognitive transfer of computer programming skills and analogous

problem solving. Paper presented at the annual conference of the American

Educational Research Association (San Francisco, April 20-24,1992).

Johnson, J. A., & Johnson, G. M. (1992). Student characteristics and computer

programming competency: A correlational analysis. Journal o f Studies in

Technical Careers, 14(1), 33-46.

Jones, P. K. (1988). The effect of computer programming instruction on the development

of generalized problem solving skills in high school students. Ed.D. Practicum,

Nova University.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Kelley, A. (1994). Is programming dead in teacher education? Journal o f Computing in

Teacher Education, 11(1), 19-22.

Kolling, M. (2000). BlueJ - The interactive Java environment, www.bluej.org.

Kurland, D. M. (Ed.). (1984). Developmental studies of computer programming skills. A

Symposium: Annual Meeting of the American Educational Research Association,

1984.

Kushan, B. (1994). Preparing programming teachers. ACM SIGSCE Bulletin, 26, 248-

252.

Kynigos, C. (1993). Children's inductive thinking during intrinsic and euclidean

geometrical activities in a computer programming environment. Educational

Studies in Mathematics, 24(2), 177-197.

Lai, K. (1993). Lego-Logo as a learning environment. Journal o f Computing in

Childhood Education, 4(3-4), 229-245.

Lai, S. Repman, J. L. (1996). The effects of analogies and mathematics ability on

students' programming learning using computer-based learning. International

Journal o f Instructional Media, 23(4), 355-364.

Lanza, A., & Roselli, T. (1991). Effects of the hypertextual approach versus the

structured approach on active and passive learners. Journal o f Computer-Based

Instruction, 18(2), 48-50.

Lehrer, R., Lee, M., & Jeong, A. (1999). Cognitive consequences of LOGO with two

different teaching methods. Reflective teaching of Logo. Journal o f the Learning

Sciences, 8(2), 245-89.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bluej.org

www.manaraa.com

Levesque, K., & Hudson, L. (2003). Trends in Introductory Technology and Computer-

Related Coursetaking. U. S. Department of Education Institute of Educational

Science. July, 2003. NCES 2003-025.

Liao, Y. C. (1990). Effects of computer programming on students' cognitive

performance: A quantitative synthesis.

Liu, M. (1998). The effect of hypermedia authoring on elementary school students'

creative thinking. Educational Computing Research, 19 (1), 27-51, 1998.

Logo Foundation (2003). Available from http://el.www.media.mit.edu/logo-

foundation/logo/index.html.

Lynch, P., & Horton, S. (1997). Yale center for advanced instructional media style guide.

Available from http://info.med.yale.edu/caim/manual/contents.html.

Madison, S. K. (1995). A study of college students' construct of parameter passing

implications for instruction. Ed.D. Dissertation, University of Wisconsin-

Milwaukee.

Martin, M. (1997). Homeschooling: Parents’ Reactions. (Report No. 141). Washington,

DC: U.S. Department of Education.

Martin, P. (1998). Java, the good, the bad and the ugly. SIGPPLAN Notices, April 1998.

Martin, B., & Heame, J. D. (1990). Transfer of learning and computer programming.

Educational Technology, 30(1), 41-44.

McCoy, L. P, & Dodl, N. R. (1989). Computer programming experience and

mathematical problem solving. Journal o f Research on Computing in Education,

22(1), 14-25.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://el.www.media.mit.edu/logo-
http://info.med.yale.edu/caim/manual/contents.html

www.manaraa.com

McCoy, L. P. (1988). General variable skill, computer programming and mathematics.

Paper presented at the Annual Meeting of the International Association for

Computing in Education (New Orleans, LA, April 1988).

McCoy, L. P. (1990). Literature relating critical skills for problem solving in mathematics

and in computer programming . School Science and Mathematics, 90(1), 48-60.

Microsoft (2003). Script Debugger. Available from http://www.microsoft.com/downloads

Milbrandt, G. (1995). Using problem solving to teach a programming language. Learning

and Leading with Technology, 23(2), 27-31.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychology Review, 63, 81-97.

Miller, R. B. (1988). Effects of Logo computer programming experience on problem

solving and spatial relations ability. Contemporary Educational Psychology,

13(4), p348-357.

Mousavi, S. Y., Low, R., Sweller, J. (1995). Reducing cognitive load by mixing auditory

and visual presentation modes. Journal o f Educational Psychology, 87(2), 319-

334.

Mwangi, w., & Sweller, J. (1998). Learning to solve compare word problems: The effect

of example format and generating self-explanations. Cognition and Instruction,

16, 173-199.

National Council for Geographic Education (NCGE). (1994). National geography

standards. Washington, DC.

National Council of Teachers of Mathematics (NCTM). (1989). Curriculum and

evaluation standards for school mathematics. Reston, VA.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microsoft.com/downloads

www.manaraa.com

National Research Council (NRC). (1996). National science education standards.

Washington, DC: National Academy Press.

Netscape (2000). Core JavaScript Guide 1.5. Available from

http://devedge.netscape.eom/library/manuals/2000/javascript/l.5/guide/intro.html

#1012569.

Nevada Department of Education (NDE). (2000). Nevada Computer and Technology

Education Standards. Carson City, NY: Department of Education.

www.nde.state.nv.us/sca/standards.

New Jersey Department of Education (NJDE). (1994). Core curriculum content

standards. Tenton, NR: Department of Education.

New York Department of Education (NYDE). (1994). Curriculum, instruction, and

assessment framework for mathematics, science, and technology. Albany, NY:

Education Department.

Oprea, J. M. (1988). Computer programming and mathematical thinking. Journal o f

Mathematical Behavior, 7(2), 175-90.

Ormrod, J.E. (1999). Human Learning. New Jersey: Merrill.

Owen, E., & Sweller, J. (1985). What do students leam while solving mathematics

problems. Journal o f Educational Psychology, 77, 272-284.

Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in

statistics: A cognitive load approach. Journal o f Educational Psychology, 84,

429-434.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://devedge.netscape.eom/library/manuals/2000/javascript/l.5/guide/intro.html
http://www.nde.state.nv.us/sca/standards

www.manaraa.com

Paas, F., & Van Merrienboer, J. (1994). Variability of worked examples and transfer of

geometrical problem-solving skills: A cognitive approach. Journal o f Educational

Psychology, 86, 122-133.

Paloff, R. M., & Pratt, K. (2001). From lessons from the cyberspace classroom: The

realities of online teaching, San Francisco, CA: Jossey-Bass: A Wiley Company.

Palumbo, D. L., & Palumbo, D. B. (1993). A comparison of the effects of Lego TC Logo

and problem solving software on elementary students' problem solving skills.

Journal o f Computing in Childhood Education, 4(3-4), 307-323.

Papert, S. (1980). Mindstorm, children, computers and powerful ideas. New York: Basic

Books.

Prichard, M. K. (1993). Mathematical iteration through computer programming.

Mathematics Teacher, 86(2), 150-56.

Quilici, J. L., & Mayor, R. E. (1996). Role of examples in how students learn to

categorize statistics word problems. Journal o f Educational Psychology, 88, 144-

161.

Reed, S. K., & Bolstad, C. A. (1991). Use of examples and procedures in problem

solving. Journal o f Experimental Psychology: Learning, Memory, and Cognition,

77,753-766.

Reed, W. & Liu, M. (1992). The comparative effects of BASIC programming versus

HyperCard programming on problem-solving, computer anxiety, and

performance. Paper presented at the Annual Conference of the Eastern

Educational Research Affiliation, Hilton Head, South Carolina, 1992.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ridley, D. S., Schulz, P. A., Glanz, R. S., & Weinstein, C. E. (1992). Self-regulated

learning: The interactive influence of metacognitive awareness and goal setting.

Journal o f Experimental Education, 60, 293-306.

Roberts, E. (2003). Resources to Support the Use of Java in Introductory Computer

Science. Special session proposal to the Special Interest Group for Computer

Science Education (SIGSCE) of the Association for Computing Machinery

(ACM). 2003.

Savitch, W. (2003). Java: An introduction to computer science and programming (third

edition). Englewood Cliffs, NJ: Prentice Hall, 2003.

Schneider, W., & Shiffrin, R. (1977). Controlled and automatic human information

processing: I. Detection, search and attention. Psychology Review, 84, 1-66.

Schraw, G. (1998). Promoting general meta-cognitive awareness. Instructional Science,

26, 113-125.

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology

Review, 7, 351-371.

Sebesta (1996). Concepts of programming languages. Menlo Park, CA: Addison Wesley.

Seidman, R. H. (1990). Computer programming and logical reasoning: Unintended

cognitive effects. Journal o f Educational Technology Systems, 18(2), 123-141.

Shih, Y., & Alessi, S. M. (1994). Mental models and transfer of learning in computer

programming. Journal o f Research on Computing in Education, 26(2), 154-175.

Shin, E., Schallert, D., & Savenye, C. (1994). Effects of learner control, advisement, and

prior knowledge on young students’ learning in a hypertext environment.

Educational Technology Research and Development, 42, 33-46.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Simon, H., & Gilmartin, K. (1973). A simulation of memory for chess positions.

Cognitive Psychology, 5, 29-46.

Spradley, J.P. (1980). Participant Observation. Fort Worth: Harcourt Brace College

Publishers.

Stark, R. (1999). Lemen mit Losungsbeispielen. Der EinfluB unvollstandiger

Losungsschritte auf Beispielelaboration, Motivation und Lemerfolg [Learning by

worked-out examples. The impact of incomplete solution steps on example

elaboration, motivation, and learning outcomes]. Bern, CH: Huber.

Stephenson, C. (1997). Revitalizing high school computer science: Finding common

ground? NECC ’97 Proceedings. Seattle, WA: National Education Computing

Conference.

Stephenson, C., and West, T. (1998). Language choice and key concepts in introductory

computer science courses. Journal o f Research on Computing in Education,

31(1), 89-95.

Stephenson, C. (2002). Java engagement for teacher training: Proposal for a pilot project

to help local secondary computer science teachers develop expertise in Java

programming. ACM memorandum, August 2002.

Sun Microsystems (2003). Java 2 Platform, Standard Edition (J2SE), vl.4.2 API

specification. Available from http://java.sun.eom/j2se/l.4.2/docs/api.

Suomala, J. (1996). Eight-year-old-pupils' problem-solving processes within a LOGO

learning environment. Scandinavian Journal o f Educational Research, 40(4),

291-309.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://java.sun.eom/j2se/l.4.2/docs/api

www.manaraa.com

Swan, K., & Black, J. B. (1993). Knowledge-based instruction: Teaching problem

solving in a Logo learning environment. Interactive Learning Environments, 3(1),

17-53.

Sweller, J. (1994). Cognitive technology: Some procedures for facilitating learning and

problem solving in mathematics and science. Journal o f Educational Psychology,

81, 457-466.

Sweller, J., Chandler, P., Tiemer, P., & Cooper, M. (1990). Cognitive load in the

structuring of technical material. Journal o f Experimental Psychology; General,

119, 176-192.

Sweller, J., Van Merrienboer, J. J. G., Paas, F. G. W. C (1998). Cognitive architecture

and instructional design. Educational Psychology Review, 10(3), 251-296.

Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving.

Journal o f Educational Psychology, 80, 424-436.

Taylor, H. G., & Norris, C. A. (1988). Retraining pre-college teachers: A survey of state

computing coordinators. ACM SIGSCE Bulleting, 20, 215-218.

Trafton, J. G., & Reiser, B. J. (1993). The contributions of studying examples and solving

problems to skill acquisition. In M. Poison (Ed.), Proceedings of the Fifteenth

Annual Conference of the Cognitive Science Society (pp. 1017-1022). Hillsdale,

NJ: Erlbaum.

Tu, J., & Falgout, B. (1995). Teaching If-Then structures-An integrated approach.

Learning and Leading with Technology, 23(3), 26-28.

Tucker, A. (1996). Strategic directions in computer science education. ACM Computing

Surveys, 28, 836-845.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Tucker, A. (2003). Toward a K-12 computer science curriculum. Concurrent session

presentation at the 2003 NECC Conference. Seattle, WA., 2003.

Van Merrienboer, J. J. G. (1990a). Instructional strategies for teaching computer

programming: Interactions with the cognitive style reflection-impulsivity. Journal

o f Research on Computing in Education, 23(1), 45-53.

Van Merrienboer, J. J. G. (1990b). What cognitive science may learn from instructional

design: A case study in introductory computer programming. Paper presented at

the Annual Meeting of the American Educational Research Association (Boston,

MA, April 16-20, 1990).

Van Merrienboer, J. J. G. (1997). Training complex cognitive skills: a four-component

instructional design model for technical training, Educational Technology

Publications, Englewood Cliffs, NJ.

Van Merrienboer, J. J. G., & Krammer, H. P. M. (1987). Instructional strategies and

tactics for the design of introductory computer programming courses in high

school. Instructional Science, 16(3), 251-85.

Van Merrienboer, J. J. G., & Paas, F. G. W. C. (1990). Automation and schema

acquisition in learning elementary computer programming: Implications for the

design of practice. Computers in Human Behavior, 6(3), 273-289.

Van Merrienboer, J. J. G., Jelsma, O., & Paas, F. G. W. C., (1992). Training for reflective

expertise: a four-component instructional design model for training complex

cognitive skills. Educational Technology Resource Development, 40(2), 23-43.

Wallace, C., Martin, P., & Lang, B. (1997). Not whether Java but how Java. Paper

presented at the Java in the Computing Conference, London, January 1997.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and

Instruction, 7, 1-39.

Webopedia (2003). Available from http://www.webopedia.com.

Wieschenberg, A. A. (1999). Logic via programming. Paper presented at the annual

International Conference on Technology in Collegiate Mathematics (12th, San

Francisco, CA, November 4-7, 1999).

Wilkerson, L., & Gijselaers, W.H. (1996). Bringing problem-based learning to higher

education: Theory and practice. New directions in teaching and learning, Jossey-

Bass Quarterly Sourcebooks, number 68. San Francisco: Jossey-Bass Publishers,

1996.

Williams, S. M., & Hmelo, C. E. (Eds.). (1998). Special Issue: Learning through problem

solving. The Journal o f Learning Sciences, 7.

Winne, P. H. (1995). Inherent details in self-regulated learning. Educational

Psychologist, 30, 173-187.

Wirth, N. (2002). Computing science education: The road not taken. Proceedings of the

7th annual conference on innovation and technology in computer science

education, Aarhus, Denmark, June 2002.

Zeidner, M., Boekaerts, M., & Pintrich, P. R. (2000). Self-regulation: Directions and

challenges for future research. In: Handbook of Self-Regulation, San Diego, CA.:

Academic Press.

Zimmerman, B. J. (1995). Self-regulation involves more than meta-cognition: A social

cognitive perspective. Educational Psychologist, 30, 217-221.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.webopedia.com

www.manaraa.com

Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. In

Boekaerts, M., Pintrich, P. R., & Zeidner, M. (Eds.) Handbook of Self-

Regulation. San Diego: Academic Press.

Zimmerman, B. J., & Bandura, A. (1994). Impact of self-regulatory influences on writing

course attainment. American Educational Research Journal, 31, 845-862.

Zimmerman, B. J., & Risemberg, R. (1997). Self-regulatory dimensions of academic

learning and motivation. In G. D. Phye (Ed.) Handbook of Academic Learning:

Construction of Knowledge. San Diego: Academic Press.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VITA

Graduate College
University of Nevada, Las Vegas

Gregory Paul Halopoff

Home Address:
2019 Pinion Springs Drive
Henderson, Nevada 89074

Degrees:
Bachelor of Science, Electrical Engineering, 1982
University of California, Los Angeles

Master of Science, Electrical Engineering, 1986
University of Southern California

Dissertation Title: Development of Computer Science Online and Preliminary Validation
of its Efficacy as an Instructional Environment

Dissertation Examination Committee:
Chairperson, Dr. Neal B. Strudler, Ph. D.
Committee Member, Dr. Randall A. Boone, Ph. D.
Committee Member, Dr. Kendall W. Hartley, Ph. D.
Committee Member, Dr. Eunsook Hong, Ph. D.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

